首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asparaginyl endopeptidase during maturation and germination of durum wheat   总被引:3,自引:0,他引:3  
Asparaginyl-endopeptidase activity was detected in endosperms of maturing and germinating wheat seeds. The highest activity was found during maturation before the maximal accumulation of storage proteins. The enzyme activity then decreased in the dry seeds and increased again during germination. The increase of activity during germination required the presence of the embryo. In fact, the activity found in detached endosperms was lower than that found in attached ones. The localization at tissue level of the enzyme reveals differences between maturation and germination: the enzyme was about equally located in the aleurone layer and starchy endosperm during maturation, but solely in the aleurone layer during germination. The asparaginyl enzymes from maturing and germinating seeds had many similar properties, such as pH optimum, pH stability, thermal stability and sensitivity to thiol reagents and to thiol compounds. The results suggest that asparaginyl endopeptidases may be involved in the modification of proproteins of storage proteins during seed maturation and in the degradation of storage proteins deposited in the aleurone layer during germination.  相似文献   

2.
Heading time in bread wheat ( Triticum aestivum L.) is determined by three characters – vernalization requirement, photoperiodic sensitivity and narrow-sense earliness (earliness per se) – which are involved in the phase transition from vegetative to reproductive growth. The wheat APETALA1 ( AP1 )-like MADS-box gene, wheat AP1 ( WAP1 , identical with VRN1 ), has been identified as an integrator of vernalization and photoperiod flowering promotion pathways. A MADS-box gene, SUPPRESSOR OF OVEREXPRESSION OF CO 1 ( SOC1 ) is an integrator of flowering pathways in Arabidopsis . In this study, we isolated a wheat ortholog of SOC1 , wheat SOC1 ( WSOC1 ), and investigated its relationship to WAP1 in the flowering pathway. WSOC1 is expressed in young spikes but preferentially expressed in leaves. Expression starts before the phase transition and is maintained during the reproductive growth phase. Overexpression of WSOC1 in transgenic Arabidopsis plants caused early flowering under short-day conditions, suggesting that WSOC1 functions as a flowering activator in Arabidopsis . WSOC1 expression is affected neither by vernalization nor photoperiod, whereas it is induced by gibberellin at the seedling stage. Furthermore, WSOC1 is expressed in transgenic wheat plants in which WAP1 expression is cosuppressed. These findings indicate that WSOC1 acts in a pathway different from the WAP1 -related vernalization and photoperiod pathways.  相似文献   

3.
We cloned a new cysteine proteinase of wheat seed origin, which hydrolyzed the storage protein gliadin almost specifically, and was named gliadain. Gliadain mRNA was expressed 1 day after the start of seed imbibition, and showed a gradual increase thereafter. Gliadain expression was suppressed when uniconazol, a gibberellin synthesis inhibitor, was added to germinating seeds. Histochemical detection with anti-gliadain serum indicated that gliadain was present in the aleurone layer and also that its expression intensity increased in sites nearer the embryo. The enzymological characteristics of gliadain were investigated using recombinant glutathione S-transferase (GST)-progliadain fusion protein produced in Escherichia coli. The GST-progliadain almost specifically digested gliadin into low molecular mass peptides. These results indicate that gliadain is produced via gibberellin-mediated gene activation in aleurone cells and secreted into the endosperm to digest its storage proteins. Enzymologically, the GST-progliadain hydrolyzed benzyloxycarbonyl-Phe-Arg-7-amino-4-methylcoumarin (Z-Phe-Arg-NH(2)-Mec) at K(m) = 9.5 microm, which is equivalent to the K(m) value for hydrolysis of this substrate by cathepsin L. Hydrolysis was inhibited by two wheat cystatins, WC1 and WC4, with IC(50) values of 1.7 x 10(-8) and 5.0 x 10(-8) m, respectively. These values are comparable with those found for GST-progliadain inhibition by E-64 and egg-white cystatin, and are consistent with the possibility that, in germinating wheat seeds, gliadain is under the control of intrinsic cystatins.  相似文献   

4.
5.
6.
Kato H  Sutoh K  Minamikawa T 《Planta》2003,217(4):676-685
We previously showed that two major cysteine endopeptidases, REP-1 and REP-2, were present in germinated rice ( Oryza sativa L.) seeds, and that REP-1 was the enzyme that digests seed storage proteins. The present study shows that REP-2 is an asparaginyl endopeptidase that acts as an activator of REP-1, and we separated it into two forms, REP-2alpha (39 kDa) and REP-2beta (40 kDa), using ion-exchange chromatography and gel filtration chromatography. Although analysis of the amino terminals revealed that 10 amino acids of both forms were identical, their isoelectric points were different. SDS-PAGE/immunoblot analysis using an antiserum raised against legumain, an asparaginyl endopeptidase from jack bean, indicated that both forms were present in maturing and germinating rice seeds, and that their amounts transiently decreased in dry seeds. Northern blot analysis indicated that REP-2 mRNA was expressed in both maturing and germinating seeds. In germinating seeds, the mRNA was detected in aleurone layers but not in shoot and root tissues. Incubation of the de-embryonated seeds in 10(-6) M gibberellic acid induced the production of large amounts of REP-1, whereas REP-2beta levels declined rapidly. Southern blot analysis showed that there is one gene for REP-2 in the genome, indicating that both REP-2 enzymes are generated from a single gene. The structure of the gene was similar to that of beta-VPE and gamma-VPE isolated from Arabidopsis thaliana.  相似文献   

7.
8.
Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.  相似文献   

9.
Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.  相似文献   

10.
Recently, we reported on the characterization of the calmodulin (CaM) gene family in wheat [44]. We classified wheat CaM genes into four subfamilies (SFs) designated SF-1 to SF-4, each representing a series of homoeoallelic loci on the homoeologous chromosomes of the three genomes of common wheat. Here we studied the expression of these wheat CaM genes in the course of wheat development. Northern blot analysis using SF-specific probes revealed differences in SF expression levels in different organs and stages of development. Subsequently, cell-specific expression of CaM SFs was investigated by in situ RNA hybridization. In developing seeds, all CaM SFs showed highest expression in the embryo and less in the aleurone and in the starchy endosperm. In primary roots, all four CaM SFs were expressed in the root cap, meristematic regions and in differentiating cells. During development of the roots, expression gradually decreased. The wheat glutenin gene, which was used as a control throughout our experiments, was found to be expressed in the starchy endosperm but not in the aleurone, embryos or vegetative tissues. In stems, at advanced stages of growth, differences in cell-specific expression of CaM SFs were found. For example, SF-2 was highly expressed in differentiating phloem fibers. Thus, CaM genes in common wheat exhibit a developmentally regulated organ-, tissue-, cell- and SF-specific expression patterns.  相似文献   

11.
Two thioredoxin h isoforms, HvTrxh1 and HvTrxh2, were identified in two and one spots, respectively, in a proteome analysis of barley (Hordeum vulgare) seeds based on 2D gel electrophoresis and MS. HvTrxh1 was observed in 2D gel patterns of endosperm, aleurone layer and embryo of mature barley seeds, and HvTrxh2 was present mainly in the embryo. During germination, HvTrxh2 decreased in abundance and HvTrxh1 decreased in the aleurone layer and endosperm but remained at high levels in the embryo. On the basis of MS identification of the two isoforms, expressed sequence tag sequences were identified, and cDNAs encoding HvTrxh1 and HvTrxh2 were cloned by RT-PCR. The sequences were 51% identical, but showed higer similarity to thioredoxin h isoforms from other cereals, e.g. rice Trxh (74% identical with HvTrxh1) and wheat TrxTa (90% identical with HvTrxh2). Recombinant HvTrxh1, HvTrxh2 and TrxTa were produced in Escherichia coli and purified using a three-step procedure. The activity of the purified recombinant thioredoxin h isoforms was demonstrated using insulin and barley alpha-amylase/subtilisin inhibitor as substrates. HvTrxh1 and HvTrxh2 were also efficiently reduced by Arabidopsis thaliana NADP-dependent thioredoxin reductase (NTR). The biochemical properties of HvTrxh2 and TrxTa were similar, whereas HvTrxh1 had higher insulin-reducing activity and was a better substrate for Arabidopsis NTR than HvTrxh2, with a Km of 13 micro m compared with 44 micro m for HvTrxh2. Thus, barley seeds contain two distinct thioredoxin h isoforms which differ in temporal and spatial distribution and kinetic properties, suggesting that they may have different physiological roles.  相似文献   

12.
Summary Two NAD-dependent alcohol dehydrogenases ADH-1 and ADH-2, under independent genetic control of genes designated as Adh-1 and Adh-2 located on chromosomes 4A, 4B and 4D, have been reported in aestivum wheat (Hart 1980). Only ADH-1 is expressed in developing seeds, dry seeds, pollen and germinating seedlings. ADH-2 can be induced in seedling roots or shoots under conditions of partial anaerobiosis or by certain chemicals. Expression of ADH-1 and ADH-2 isoenzymes was investigated in undifferentiated calli from aestivum and durum wheats, rye, triticale and also in in vitro regenerated roots and leaves from aestivum cultures. Wheat callus cultures originating from seed, mature and immature embryos, mesocotyl and root, as well as cultures grown on media containing different supplements did not show any variation in the overall expression of ADH-1 or ADH-2, although differences in the band intensities were observed. The callus isoenzyme pattern was similar to that observed in roots under anaerobic conditions. Both ADH-1 and ADH-2 were expressed in in vitro regenerated roots but were absent in regenerated leaves. Expression of ADH-1 and ADH-2 in wheat calli seems to be related to the type of differentiation.  相似文献   

13.
In germinating cereal caryopses, α-amylase is synthesized in the aleurone layer and scutellum epithelium. Produced enzyme is released into the endosperm, where starch is hydrolyzed. We investigated the effect of sugars on gibberellic acid (GA)-induced synthesis of this enzyme in both tissues of wheat (Triticum aestivum L.) seeds. α-Amylase synthesis in the embryo was much more sensitive to sugars, and their inhibitory effect was observed at the lower concentrations (10–20 mM), whereas in the aleurone layer the enzyme was only inhibited at a relatively high (above 100 mM) concentration of sugars in the medium. These results point to a specific (repressive) influence of sugars on embryonic α-amylase and probably to its nonspecific (osmotic) effect on the cells of the aleurone layer. It was found that phosphorylated sugars were more effective repressors of α-amylase than nonphosphorylated sugars.  相似文献   

14.
15.
16.
The expression of a 30 kD cysteine endoprotease (EP-B) was studied by in situ hybridization and immunomicroscopy to clarify its role in germinating barley grains. At the beginning of germination, EP-B mRNA was expressed in the scutellar epithelium and aleurone cells next to the embryo. Later, mRNA levels were highest in the aleurone layer proceeding to the distal end of the grain. During the first day of germination, EP-B protein was strongly localized to the germ aleurone and scutellar epithelium from where the secretion into the starchy endosperm began. Secretion was also observed to proceed along the aleurone layer to the distal end. These results show that EP-B is differentially localized during germination, and both scutellum and aleurone layer are able to synthesize and secrete EP-B protein.  相似文献   

17.
18.
19.
为明确小麦春化基因的时空表达特性,以中国春和洛旱2号小麦品种为试验材料,利用半定量RT-PCR技术,分析了3个春化基因VERNALIZATION1(VRN1)、VRN2和VRN3的时空表达特性。结果表明,VRN1在中国春的三叶期叶片和根、灌浆期的茎秆和旗叶、花药、胚珠和发育的种子中均有不同程度的表达。在开花前,表达水平呈上升趋势,而花后呈降低的趋势,在干种子和萌发种子的胚芽中没有检测到表达;在洛旱2号中,除了在三叶期的叶片和根中没有检测到表达外,VRN1的表达特性与中国春有相同的趋势。VRN2只在三叶期的叶片和萌发种子的胚芽中表达,在其他检测的组织中没有表达;VRN3的表达与VRN1的时空表达特性相似,但在根中未检测到表达。这一结果为进一步分析普通小麦品种春化发育的分子调控机理提供了重要信息。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号