首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The basic Helix-Loop-Helix gene neurogenin1 (ngn1) is expressed in a complex pattern in the neural plate of zebrafish embryos, demarcating the sites of primary neurogenesis. We have dissected the ngn1 locus to identify cis-regulatory regions that control this expression. We have isolated two upstream elements that drive expression in precursors of Rohon-Beard sensory neurons and hindbrain interneurons and in clusters of neuronal precursors in the anterior neural plate, respectively. A third regulatory region mediates later expression. Thus, regulatory sequences with temporally and spatially distinct activities control ngn1 expression in primary neurons of the zebrafish embryo. These regions are highly similar to 5' sequences in the mouse and human ngn1 gene, suggesting that amniote embryos, despite lacking primary neurons, utilize related mechanism to control ngn1 expression.  相似文献   

2.
3.
4.
5.
The midbrain-hindbrain (MH) domain of the vertebrate embryonic neural plate displays a stereotypical profile of neuronal differentiation, organized around a neuron-free zone ('intervening zone', IZ) at the midbrain-hindbrain boundary (MHB). The mechanisms establishing this early pattern of neurogenesis are unknown. We demonstrate that the MHB is globally refractory to neurogenesis, and that forced neurogenesis in this area interferes with the continued expression of genes defining MHB identity. We further show that expression of the zebrafish bHLH Hairy/E(spl)-related factor Her5 prefigures and then precisely delineates the IZ throughout embryonic development. Using morpholino knock-down and conditional gain-of-function assays, we demonstrate that Her5 is essential to prevent neuronal differentiation and promote cell proliferation in a medial compartment of the IZ. We identify one probable target of this activity, the zebrafish Cdk inhibitor p27Xic1. Finally, although the her5 expression domain is determined by anteroposterior patterning cues, we show Her5 does not retroactively influence MH patterning. Together, our results highlight the existence of a mechanism that actively inhibits neurogenesis at the MHB, a process that shapes MH neurogenesis into a pattern of separate neuronal clusters and might ultimately be necessary to maintain MHB integrity. Her5 appears as a partially redundant component of this inhibitory process that helps translate early axial patterning information into a distinct spatiotemporal pattern of neurogenesis and cell proliferation within the MH domain.  相似文献   

6.
7.
8.
In teleosts and amphibians, the proneuronal domains, which give rise to primary-motor, primary-inter and Rohon-Beard (RB) neurons, are established at the beginning of neurogenesis as three longitudinal stripes along the anteroposterior axis in the dorsal ectoderm. The proneuronal domains are prefigured by the expression of basic helix-loop-helix (bHLH) proneural genes, and separated by domains (inter-proneuronal domains) that do not express the proneural genes. Little is known about how the formation of these domains is spatially regulated. We have found that the zebrafish hairy- and enhancer of split-related (Her) genes her3 and her9 are expressed in the inter-proneuronal domains, and are required for their formation. her3 and her9 expression was not regulated by Notch signaling, but rather controlled by positional cues, in which Bmp signaling is involved. Inhibition of Her3 or Her9 by antisense morpholino oligonucleotides led to ectopic expression of the proneural genes in part of the inter-proneuronal domains. Combined inhibition of Her3 and Her9 induced ubiquitous expression of proneural and neuronal genes in the neural plate, and abolished the formation of the inter-proneuronal domains. Furthermore, inhibition of Her3/Her9 and Notch signaling led to ubiquitous and homogeneous expression of proneural and neuronal genes in the neural plate, revealing that Her3/Her9 and Notch signaling have distinct roles in neurogenesis. These data indicate that her3 and her9 function as prepattern genes that link the positional dorsoventral polarity information in the posterior neuroectoderm to the spatial regulation of neurogenesis.  相似文献   

9.
10.
Patterning the neural plate in vertebrates depends on complex interactions between a variety of secreted growth factors. Here we describe a novel secreted factor in zebrafish, named mdk2, related to the midkine family of heparin-binding growth factors that is involved in posterior neural development. mdk2 is expressed shortly after the onset of gastrulation in the presumptive neural plate cells of the epiblast, and this expression is enhanced by exogenous retinoic acid. Ectopic expression of mdk2 enhances neural crest cell fates at the lateral edges of the caudal neural plate, concomitant with a repression of anterior structures and mesendodermal and ectodermal markers. Reciprocally, ectopic expression of a dominant negative mdk2 results in severe deficiencies of structures posterior to the midbrain-hindbrain boundary, with negligible effects on anterior structures. In these embryos, the expression of hindbrain and neural crest markers is strongly reduced, and the formation of posterior primary moto- and sensory neurons is blocked. Analyses in mutant zebrafish embryos shows that expression of mdk2 is independent of FGF8 and nodal-related-1 signaling, but is under negative control of BMP signaling. These data support the hypothesis that mdk2 participates in posterior neural development in zebrafish.  相似文献   

11.
12.
We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well‐known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP‐positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP‐positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 642–660, 2016  相似文献   

13.
The Drosophila homeoproteins Ara and Caup are members of a combination of factors (prepattern) that control the highly localized expression of the proneural genes achaete and scute. We have identified two Xenopus homologs of ara and caup, Xiro1 and Xiro2. Similarly to their Drosophila counterparts, they control the expression of proneural genes and, probably as a consequence, the size of the neural plate. Moreover, Xiro1 and Xiro2 are themselves controlled by noggin and retinoic acid and, similarly to ara and caup, they are overexpressed by expression in Xenopus embryos of the Drosophila cubitus interruptus gene. These and other findings suggest the conservation of at least part of the genetic cascade that regulates proneural genes, and the existence in vertebrates of a prepattern of factors important to control the differentiation of the neural plate.  相似文献   

14.
15.
16.
17.
18.
19.
During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号