首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We identified Shiga toxin gene (stx)-negative Escherichia coli O26:H11 and O26:NM (nonmotile) strains as the only pathogens in the stools of five patients with hemolytic-uremic syndrome (HUS). Because the absence of stx in E. coli associated with HUS is unusual, we examined the strains for potential virulence factors and interactions with microvascular endothelial cells which are the major targets affected during HUS. All five isolates possessed the enterohemorrhagic E. coli (EHEC)-hlyA gene encoding EHEC hemolysin (EHEC-Hly), expressed the enterohemolytic phenotype, and were cytotoxic, in dose- and time-dependent manners, to human brain microvascular endothelial cells (HBMECs). Significantly reduced cytotoxicity in an EHEC-Hly-negative spontaneous derivative of one of these strains, and a dose- and time-dependent cytotoxicity of recombinant E. coli O26 EHEC-Hly to HBMECs, suggest that the endothelial cytotoxicity of these strains was mediated by EHEC-Hly. The toxicity of EHEC-Hly to microvascular endothelial cells plausibly contributes to the virulence of the stx-negative E. coli O26 strains and to the pathogenesis of HUS.  相似文献   

2.
Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of bloody diarrhea and extraintestinal sequelae in humans, most importantly hemolytic-uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Besides the bacteriophage-encoded Shiga toxin gene (stx), EHEC harbors the locus of enterocyte effacement (LEE), which confers the ability to cause attaching and effacing lesions. Currently, the vast majority of EHEC infections are caused by strains belonging to five O serogroups (the “big five”), which, in addition to O157, the most important, comprise O26, O103, O111, and O145. We hypothesize that these four non-O157 EHEC serotypes differ in their phylogenies. To test this hypothesis, we used multilocus sequence typing (MLST) to analyze a large collection of 250 isolates of these four O serogroups, which were isolated from diseased as well as healthy humans and cattle between 1952 and 2009. The majority of the EHEC isolates of O serogroups O26 and O111 clustered into one sequence type complex, STC29. Isolates of O103 clustered mainly in STC20, and most isolates of O145 were found within STC32. In addition to these EHEC strains, STC29 also included stx-negative E. coli strains, termed atypical enteropathogenic E. coli (aEPEC), yet another intestinal pathogenic E. coli group. The finding that aEPEC and EHEC isolates of non-O157 O serogroups share the same phylogeny suggests an ongoing microevolutionary scenario in which the phage-encoded Shiga toxin gene stx is transferred between aEPEC and EHEC. As a consequence, aEPEC strains of STC29 can be regarded as post- or pre-EHEC isolates. Therefore, STC29 incorporates phylogenetic information useful for unraveling the evolution of EHEC.  相似文献   

3.
Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.  相似文献   

4.
Atypical enteropathogenic Escherichia coli (aEPEC) has been associated with infantile diarrhea in many countries. The clonal structure of aEPEC is the object of active investigation but few works have dealt with its genetic relationship with other diarrheagenic E. coli (DEC). This study aimed to evaluate the genetic relationship of aEPEC with other DEC pathotypes. The phylogenetic relationships of DEC strains were evaluated by multilocus sequence typing. Genetic diversity was assessed by pulsed-field gel electrophoresis (PFGE). The phylogram showed that aEPEC strains were distributed in four major phylogenetic groups (A, B1, B2 and D). Cluster I (group B1) contains the majority of the strains and other pathotypes [enteroaggregative, enterotoxigenic and enterohemorrhagic E. coli (EHEC)]; cluster II (group A) also contains enteroaggregative and diffusely adherent E. coli ; cluster III (group B2) has atypical and typical EPEC possessing H6 or H34 antigen; and cluster IV (group D) contains aEPEC O55:H7 strains and EHEC O157:H7 strains. PFGE analysis confirmed that these strains encompass a great genetic diversity. These results indicate that aEPEC clonal groups have a particular genomic background – especially the strains of phylogenetic group B1 – that probably made possible the acquisition and expression of virulence factors derived from non-EPEC pathotypes.  相似文献   

5.
The locus of enterocyte effacement (LEE) and genomic O island 122 (OI-122) are pathogenicity islands in verocytotoxin-producing Escherichia coli (VTEC) serotypes that are associated with outbreaks and serious disease. Composed of three modules, OI-122 may occur as "complete" (with all three modules) or "incomplete" (with one or two modules) in different strains. OI-122 encodes two non-LEE effector (Nle) molecules that are secreted by the LEE type III secretion system, and LEE and OI-122 are cointegrated in some VTEC strains. Thus, they are functionally linked, but little is known about the patterns of acquisition of these codependent islands. To examine this, we conducted a population genetics analysis, using multilocus sequence typing (MLST), with 72 VTEC strains (classified into seropathotypes A to E) and superimposed on the results the LEE and OI-122 contents of these organisms. The wide distribution of LEE and OI-122 modules among MLST clonal groups corroborates the hypothesis that there has been lateral transfer of both pathogenicity islands. Sequence analysis of a pagC-like gene in OI-122 module 1 also revealed two nonsynonymous single-nucleotide polymorphisms that could help discriminate a subset of seropathotype C strains and determine the presence of the LEE. A nonsense mutation was found in this gene in five less virulent strains, consistent with a decaying or inactive gene. The modular nature of OI-122 could be explained by the acquisition of modules by lateral transfer, either singly or as a group, and by degeneration of genes within modules. Correlations between clonal group, seropathotype, and LEE and OI-122 content provide insight into the role of genomic islands in VTEC evolution.  相似文献   

6.
Shiga toxin-producing Escherichia coli (STEC) O26 is one of the top five enterohemorrhagic E. coli (EHEC) O groups most often associated with hemorrhagic colitis and hemolytic uremic syndrome (HUS) worldwide. STEC O26 is considered to have evolved from enteropathogenic (EPEC) O26 strains through the acquisition of Shiga toxin (Stx)-encoding genes. Our PCR data identified several STEC-like strains expressing all features of STEC except Stx production and carrying remnants of Stx phages that were probably derivatives of EHEC O26. EHEC and EPEC O26 strains phenotypically resemble O26 EHEC-like and apathogenic E. coli O26 strains and are therefore undistinguishable by cultural methods. A clear discrimination between the different O26 groups is required for diagnostics in patients and for control of food safety. To develop an assay for specific detection of EHEC and EHEC-like O26 strains, we used a high-throughput PCR approach for selection of discriminative genetic markers among 33 tested genes mostly encoding type III secretion system effector proteins. The genes ECs1822, nleH1-2, nleA, nleC, nleH1-1, nleG, nleG2, nleG6-1, nleG6-2, espJ, espM2, nleG8-2, espG, ent (or espL2), nleB, nleE, efa1, and espB were detected at different frequencies in O26 EHEC, EHEC-like, and EPEC strains, indicating the possible role of these genes in virulence of human pathogenic O26 strains. The espK and espN genes were detected only in EHEC and EHEC-like O26 strains. espK was present in 99.14% of EHEC and 91.14% of EHEC-like O26 strains and was hence the best candidate as a genetic marker for characterizing these pathogroups. These data were corroborated by a genotyping real-time PCR test based on allelic discrimination of the arcA (aerobic respiratory control protein A) gene. The results indicate that a combination of molecular detection tools for O26 wzx (wzx(O26)), eae-beta, stx, espK, and arcA genotyping is highly discriminative for clear identification of EHEC and EHEC-like E. coli O26 strains. This simple diagnostic test might be applicable in hospital service laboratories or public health laboratories to test strains isolated from stools of patients suffering from diarrhea.  相似文献   

7.
A previous national survey of Escherichia coli in Norwegian sheep detected eae-positive (eae(+)) E. coli O26:H11 isolates in 16.3% (80/491) of the flocks. The purpose of the present study was to evaluate the human-pathogenic potential of these ovine isolates by comparing them with E. coli O26 isolates from humans infected in Norway. All human E. coli O26 isolates studied carried the eae gene and shared flagellar type H11. Two-thirds of the sheep flocks and 95.1% of the patients harbored isolates containing arcA allele type 2 and espK and were classified as enterohemorrhagic E. coli (EHEC) (stx positive) or EHEC-like (stx negative). These isolates were further divided into group A (EspK2 positive), associated with stx(2-EDL933) and stcE(O103), and group B (EspK1 positive), associated with stx(1a). Although the stx genes were more frequently present in isolates from patients (46.3%) than in those from sheep flocks (5%), more than half of the ovine isolates in the EHEC/EHEC-like group had multiple-locus variable number of tandem repeat analysis (MLVA) profiles that were identical to those seen in stx-positive human O26:H11 isolates. This indicates that EHEC-like ovine isolates may be able to acquire stx-carrying bacteriophages and thereby have the possibility to cause serious illness in humans. The remaining one-third of the sheep flocks and two of the patients had isolates fulfilling the criteria for atypical enteropathogenic E. coli (aEPEC): arcA allele type 1 and espK negative (group C). The majority of these ovine isolates showed MLVA profiles not previously seen in E. coli O26:H11 isolates from humans. However, according to their virulence gene profile, the aEPEC ovine isolates should be considered potentially pathogenic for humans. In conclusion, sheep are an important reservoir of human-pathogenic E. coli O26:H11 isolates in Norway.  相似文献   

8.
9.
An overview of atypical enteropathogenic Escherichia coli   总被引:1,自引:0,他引:1  
The enteropathogenic Escherichia coli (EPEC) pathotype is currently divided into two groups, typical EPEC (tEPEC) and atypical EPEC (aEPEC). The property that distinguishes these two groups is the presence of the EPEC adherence factor plasmid, which is only found in tEPEC. aEPEC strains are emerging enteropathogens that have been detected worldwide. Herein, we review the serotypes, virulence properties, genetic relationships, epidemiology, reservoir and diagnosis of aEPEC, including those strains not belonging to the classical EPEC serogroups (nonclassical EPEC serogroups). The large variety of serotypes and genetic virulence properties of aEPEC strains from nonclassical EPEC serogroups makes it difficult to determine which strains are truly pathogenic.  相似文献   

10.
Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.  相似文献   

11.
There are contradictory literature reports on the role of verotoxin (VT) in adherence of enterohemorrhagic Escherichia coli O157:H7 (O157 EHEC) to intestinal epithelium. There are reports that putative virulence genes of O island 7 (OI-7), OI-15, and OI-48 of this pathogen may also affect adherence in vitro. Therefore, mutants of vt2 and segments of OI-7 and genes aidA15 (gene from OI-15) and aidA48 (gene from OI-48) were generated and evaluated for adherence in vitro to cultured human HEp-2 and porcine jejunal epithelial (IPEC-J2) cells and in vivo to enterocytes in pig ileal loops. VT2-negative mutants showed significant decreases in adherence to both HEp-2 and IPEC-J2 cells and to enterocytes in pig ileal loops; complementation only partially restored VT2 production but fully restored the adherence to the wild-type level on cultured cells. Deletion of OI-7 and aidA48 had no effect on adherence, whereas deletion of aidA15 resulted in a significant decrease in adherence in pig ileal loops but not to the cultured cells. This investigation supports the findings that VT2 plays a role in adherence, shows that results obtained in adherence of E. coli O157:H7 in vivo may differ from those obtained in vitro, and identified AIDA-15 as having a role in adherence of E. coli O157:H7.Escherichia coli O157:H7 is the prototypical enterohemorrhagic E. coli (EHEC) strain and is the most common serotype associated with large outbreaks and sporadic cases of hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS) (25). It is well established that EHEC O157:H7 can colonize the intestine of humans and animals and that adherence to intestinal epithelial cells occurs through the formation of attaching-and-effacing (AE) lesions, which is a critical early step in infection. Some researchers have suggested that EHEC uses fimbriae to make the initial contact with epithelial cells, prior to intimate attachment mediated by locus of enterocyte effacemen-encoded proteins (15). Several potential adherence factors of EHEC O157:H7 have been described, but only the outer membrane protein intimin has been demonstrated to play a role in intestinal colonization in animal models (16). Intimin mediates the intimate adherence component of the AE lesion by binding to the translocated intimin receptor Tir, resulting in close attachment of the bacteria to the host cell membrane (17). Intimin can also bind to β1 integrins and nucleolin on host cells (9, 36). Severe damage due to infection with EHEC is attributable to the cytotoxic verotoxin (VT), which damages epithelial and endothelial cells, leading to bloody diarrhea and HUS (16). Several investigators have reported that VT does not play a role in colonization of the intestine (2, 4, 34). However, Robinson et al. (30) reported recently that VT enhances adherence to epithelial cells and colonization of the mouse intestine by E. coli O157:H7. Therefore, the present study examined the involvement of VT in adherence in vitro and in vivo.Several putative virulence genes have been identified in O islands (OIs) in EHEC O157:H7 strain EDL 933 (26), including those encoding Iha and AIDA-I in OI-43/48, AIDA-I in OI-15, and a ClpB chaperone protein and a putative macrophage toxin in OI-7 (26, 27). OI-7 also contains many unknown open reading frames (ORFs) whose function in the pathogenesis of EHEC O157:H7 has not been investigated. Iha, an adherence-conferring outer membrane protein similar to IrgA (the product of iron-regulated gene A) (38), is a virulence factor in uropathogenic E. coli strain CFT073 (14). AIDA-I, encoded by aidA, was first identified in EPEC and confers the capacity for diffuse adhesion of the bacteria to epithelial cells (1). AIDA-I-like adhesins from OI-15 and OI-43/48 show 55% and 68% homology, respectively, to the AIDA-I of EPEC (26, 27). All three AIDA proteins show characteristics of an autotransporter membrane protein with a β-barrel structure (20), which is exposed at the surface of the bacteria (13). These observations suggest that the two homologs of AIDA-I may also function as adhesins in EHEC O157:H7; however, the roles of the AIDA-I-like adhesins in EHEC have yet to be determined.EHEC O157:H7 has been isolated from pigs, and conventional pigs are a permissive host and therefore a potential reservoir for human infection with EHEC O157:H7 (8). One recent family outbreak was associated with pork salami (3). Pigs are highly relevant models for the study of virulence of EHEC O157:H7 in humans and have been extensively used to characterize putative virulence factors and to investigate the pathogenesis of EHEC O157:H7 and other verotoxigenic E. coli strains (6, 11, 21). The present study was designed to examine VT2-negative mutants, OI-7 deletions, and aidA knockouts from OI-15 and OI-48 of EHEC O157:H7 in vitro and in the pig intestines for their roles in adherence.  相似文献   

12.
An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM? sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM? within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.  相似文献   

13.
Rapid and specific detection of Shiga toxin-producing Escherichia coli (STEC) strains with a high level of virulence for humans has become a priority for public health authorities. This study reports on the development of a low-density macroarray for simultaneously testing the genes stx1, stx2, eae, and ehxA and six different nle genes issued from genomic islands OI-122 (ent, nleB, and nleE) and OI-71 (nleF, nleH1-2, and nleA). Various strains of E. coli isolated from the environment, food, animals, and healthy children have been compared with clinical isolates of various seropathotypes. The eae gene was detected in all enteropathogenic E. coli (EPEC) strains as well as in enterohemorrhagic E. coli (EHEC) strains, except in EHEC O91:H21 and EHEC O113:H21. The gene ehxA was more prevalent in EHEC (90%) than in STEC (42.66%) strains, in which it was unequally distributed. The nle genes were detected only in some EPEC and EHEC strains but with various distributions, showing that nle genes are strain and/or serotype specific, probably reflecting adaptation of the strains to different hosts or environmental niches. One characteristic nle gene distribution in EHEC O157:[H7], O111:[H8], O26:[H11], O103:H25, O118:[H16], O121:[H19], O5:H−, O55:H7, O123:H11, O172:H25, and O165:H25 was ent/espL2, nleB, nleE, nleF, nleH1-2, nleA. (Brackets indicate genotyping of the flic or rfb genes.) A second nle pattern (ent/espL2, nleB, nleE, nleH1-2) was characteristic of EHEC O103:H2, O145:[H28], O45:H2, and O15:H2. The presence of eae, ent/espL2, nleB, nleE, and nleH1-2 genes is a clear signature of STEC strains with high virulence for humans.Since the early 1980s, Shiga toxin-producing Escherichia coli (STEC) has emerged as a major cause of food-borne infections (17, 30). STEC can cause diarrhea in humans, and some STEC strains may cause life-threatening diseases, such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). On the basis of its human pathogenicity, this subset of STEC strains was also designated enterohemorrhagic E. coli (EHEC) (22, 25). Numerous cases of HC and HUS have been attributed to EHEC serotype O157:H7 strains, but it has now been recognized that other serotypes of STEC belong to the EHEC group. The STEC seropathotype classification is based upon the serotype association with human epidemics, HUS, and diarrhea and has been developed as a tool to assess the clinical and public health risks associated with non-O157 EHEC and STEC strains (18). Only a few serotypes of STEC have been reported as most frequently associated with severe disease in humans. Besides E. coli O157:[H7], five other serotypes, namely O26:[H11], O103:H2, O111:[H8], O121:[H19], and O145:[H28], account for the group of typical EHEC (25). (Brackets indicate genotyping of the flic or rfb genes; the absence of brackets indicates data obtained with the conventional serotyping approach using specific antisera, as described in Materials and Methods.) Atypical EHEC group strains of serotypes O91:[H21], O113:H21, and O104:H21 are less frequently involved in hemorrhagic diseases than typical EHEC but are a frequent cause of diarrhea (8, 12, 25). Recent data from Enter-Net, a global surveillance consortium of 35 countries that tracks enteric infectious diseases, showed that the number of human cases of illness caused by non-O157 EHEC increased globally by 60.5% between 2000 and 2005, while at the same time the number of cases linked to EHEC O157 increased by only 13% (1). In the past few years, new serotypes of EHEC that differ from those previously known as typical and atypical EHEC have emerged (6, 8, 23, 24, 31). These EHEC strains were identified as important causes of food-borne infections in humans and were described as “new emerging EHEC.”The production of Shiga toxin (Stx) by EHEC is the primary virulence trait responsible for HUS, but many E. coli non-O157:H7 strains that produce Stx do not cause HUS. Identification of human-virulent STEC by detection of unique stx genes may be misleading, since not all STEC strains are clinically significant for humans (11). Besides the ability to produce one or more types of Shiga toxins, typical EHEC strains harbor a genomic island called the “locus of enterocyte effacement” (LEE). Atypical EHEC strains are negative for the LEE but may carry other factors for colonization of the human intestine (6, 25). The LEE carries genes encoding functions for bacterial colonization of the gut and for destruction of the intestinal mucosa, thus contributing to the disease process (25). The LEE eae gene product intimin is directly involved in the attaching and effacing (A/E) process (37). The LEE includes regulatory elements, a type III secretion system (TTSS), secreted effector proteins, and their cognate chaperon (13, 29). In addition to the intimin, most of the typical EHEC strains harbor the plasmid-borne enterohemolysin (ehxA), which is considered an associated virulence factor (6, 25).A number of other pathogenicity island (PAI) candidates, including O island 122 (OI-122) and O island 71 (OI-71), have been found in EHEC and EPEC strains, but their role in disease is not fully clear. Within the EHEC group, both O157:H7 strains (19, 34) and non-O157 strains (18, 35) present a variable repertoire of virulence determinants, including a collection of non-LEE-encoded effector (nle) genes that encode translocated substrates of the type III secretion system (9, 20). Our objective was to identify type III secreted virulence factors that distinguish EHEC O157 and non-O157 strains constituting a severe risk for human health from STEC strains that are not associated with severe and epidemic disease, a concept called “molecular risk assessment” (MRA) by Coombes et al. (9). Supporting the MRA approach requires the development of diagnostic tests based on multiplex nucleic acid amplification and microfluidics-based detection using standardized platforms applicable in hospital service or public health laboratories. It is now feasible to develop low-density DNA arrays that can be used to examine the gene inventory from isolated strains, offering a genetic bar coding strategy. A recent innovation in this field is the introduction of the GeneSystems PCR technology (5, 36). In this study, we have developed a GeneDisc array designed for simultaneous detection of genes encoding Shiga toxins 1 and 2 (stx1 and stx2), intimins (eae), enterohemolysin (ehxA), and six different nle genes derived from genomic islands OI-71 and OI-122. We focused our efforts on the detection of the OI-122 genes, ent/espL2 (Z4326), nleB (Z4328), and nleE (Z4329), and the OI-71 genes, nleF (Z6020), nleH1-2 (Z6021), and nleA (Z6024). The macroarray presented here was evaluated for its specificity and ability to discriminate between STEC causing serious illness in humans and other E. coli strains.  相似文献   

14.
Enterohemorrhagic Escherichia coli (EHEC) are a physiologically, immunologically and genetically diverse collection of strains that pose a serious water-borne threat to human health. Consequently, immunological and PCR assays have been developed for the rapid, sensitive detection of presumptive EHEC. However, the ability of these assays to consistently detect presumptive EHEC while excluding closely related non-EHEC strains has not been documented. We conducted a 30-month monitoring study of a major metropolitan watershed. Surface water samples were analyzed using an immunological assay for E. coli O157 (the predominant strain worldwide) and a multiplex PCR assay for the virulence genes stx(1), stx(2) and eae. The mean frequency of water samples positive for the presence of E. coli O157, stx(1) or stx(2) genes, or the eae gene was 50%, 26% and 96%, respectively. Quantitative analysis of selected enriched water samples indicated that even in samples positive for E. coli O157 cells, stx(1)/stx(2) genes, and the eae gene, the concentrations were rarely comparable. Seventeen E. coli O157 strains were isolated, however, none were EHEC. These data indicate the presence of multiple strains similar to EHEC but less pathogenic. These findings have important ramifications for the rapid detection of presumptive EHEC; namely, that current immunological or PCR assays cannot reliably identify water-borne EHEC strains.  相似文献   

15.
肠出血性大肠杆菌O157感染防治研究进展   总被引:15,自引:0,他引:15  
肠出血性大肠杆菌 (EHEC)感染是一种重要的新发传染病 ,O15 7是EHEC的一个主要菌型 ,感染该菌可使人患腹泻、出血性结肠炎 (HC)、溶血性尿毒综合征 (HUS)等 ,死亡率较高。EHECO15 7感染在许多国家包括我国都有暴发流行。EHECO15 7产生的粘附因子Intimin可引起粘附擦拭 (A/E)损伤 ,并可产生致死性的毒素Stx。抗生素治疗可使患者并发HUS危险性增加 ,临床上无特效的治疗药物 ,疫苗研究将对EHECO15 7的控制起重要作用。  相似文献   

16.
Characterization of an Escherichia coli O157 strain collection (n = 42) derived from healthy Hungarian cattle revealed the existence of diverse pathotypes. Enteropathogenic E. coli (EPEC; eae positive) appeared to be the most frequent pathotype (n = 22 strains), 11 O157 strains were typical enterohemorrhagic E. coli (EHEC; stx and eae positive), and 9 O157 strains were atypical, with none of the key stx and eae virulence genes detected. EHEC and EPEC O157 strains all carried eae-gamma, tir-gamma, tccP, and paa. Other virulence genes located on the pO157 virulence plasmid and different O islands (O island 43 [OI-43] and OI-122), as well as espJ and espM, also characterized the EPEC and EHEC O157 strains with similar frequencies. However, none of these virulence genes were detected by PCR in atypical O157 strains. Interestingly, five of nine atypical O157 strains produced cytolethal distending toxin V (CDT-V) and carried genes encoding long polar fimbriae. Macro-restriction fragment enzyme analysis (pulsed-field gel electrophoresis) revealed that these E. coli O157 strains belong to four main clusters. Multilocus sequence typing analysis revealed that five housekeeping genes were identical in EHEC and EPEC O157 strains but were different in the atypical O157 strains. These results suggest that the Hungarian bovine E. coli O157 strains represent at least two main clones: EHEC/EPEC O157:H7/NM (nonmotile) and atypical CDT-V-producing O157 strains with H antigens different from H7. The CDT-V-producing O157 strains represent a novel genogroup. The pathogenic potential of these strains remains to be elucidated.Escherichia coli O157:H7 is a food- and waterborne zoonotic pathogen with serious effects on public health. E. coli O157:H7 causes diseases in humans ranging from uncomplicated diarrhea to hemorrhagic colitis and hemolytic-uremic syndrome (HUS) (30). Typically, enterohemorrhagic E. coli (EHEC) strains express two groups of important virulence factors: one or more Shiga toxins (Stx; also called verotoxins), encoded by lambda-like bacteriophages, and a pathogenicity island called the locus of enterocyte effacement (LEE) encoding all the proteins necessary for attaching and effacing lesions of epithelial cells (41). Comparative genomic studies of E. coli O157:H7 strains revealed extensive genomic diversity related to the structures, positions, and genetic contents of bacteriophages and the variability of putative virulence genes encoding non-LEE effector proteins (29, 43).Ruminants and, in particular, healthy cattle are the major reservoir of E. coli O157:H7, although the prevalence of O157:H7 strains in cattle may vary widely, as reviewed by Caprioli et al. (12). E. coli O157:H7 has been found to persist and remain infective in the environment for a long time, e.g., for at least 6 months in water trough sediments, which may be an important environmental niche.In Hungary, infections with E. coli O157 and other Shiga toxin-producing E. coli (STEC) strains in humans in cases of “enteritidis infectiosa” have been notifiable since 1998 on a case report basis. Up to now, the disease has been sporadic, and fewer than 100 (n = 83) cases of STEC infection among 2,700 suspect cases have been reported since 2001. However, until the present study, no systematic, representative survey of possible animal sources had been performed.In this study, our aim was to investigate healthy cattle in Hungary for the presence of strains of E. coli O157 and the genes encoding Shiga toxins (stx1 and stx2) and intimin (eae) and a wide range of putative virulence genes found in these strains. In addition, the phage type (PT) was determined, and pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to further compare the strains at the molecular level. Shiga toxin and cytolethal distending toxin (CDT) production was also examined, and phage induction experiments were conducted. The high incidence of enteropathogenic E. coli (EPEC; eae-positive) O157:H7 strains and atypical (eae- and stx-negative) O157 strains indicates that cattle are a major reservoir of not only EHEC O157 but also EPEC O157 and atypical E. coli O157 strains. These atypical, non-sorbitol-fermenting O157 strains frequently produced CDT-V and may represent a novel O157 clade as demonstrated by MLST and PFGE.  相似文献   

17.
Twenty-three Escherichia coli O26 strains from humans, cattle, sheep, pigs and chicken were investigated for virulence markers and for genetic similarity by pulsed field gel electrophoresis and multi locus sequence typing. Two groups of genetically closely related O26 strains were defined. One group is formed by enteropathogenic (EPEC) and enterohemorrhagic (EHEC) E. coli strains, which do not ferment rhamnose and dulcitol and most of these carry a plasmid encoding enterohemolysin. The other group consists of rhamnose and dulcitol fermenting EPEC strains, which carry plasmids encoding alpha-hemolysin. Multiple species of domestic animals were shown to serve as a reservoir for human pathogenic O26 EPEC and EHEC strains.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) are food-borne pathogens that can cause serious infections ranging from diarrhea to hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Translocation of Shiga-toxins (Stx) from the gut lumen to underlying tissues is a decisive step in the development of the infection, but the mechanisms involved remain unclear. Many bacterial pathogens target the follicle-associated epithelium, which overlies Peyer's patches (PPs), cross the intestinal barrier through M cells and are captured by mucosal macrophages. Here, translocation across M cells, as well as survival and proliferation of EHEC strains within THP-1 macrophages were investigated using EHEC O157:H7 reference strains, isogenic mutants, and 15 EHEC strains isolated from HC/HUS patients. We showed for the first time that E. coli O157:H7 strains are able to interact in vivo with murine PPs, to translocate ex vivo through murine ileal mucosa with PPs and across an in vitro human M cell model. EHEC strains are also able to survive and to produce Stx in macrophages, which induce cell apoptosis and Stx release. In conclusion, our results suggest that the uptake of EHEC by M cells and underlying macrophages in the PP may be a critical step in Stx translocation and release in vivo. A new model for EHEC infection in humans is proposed that could help in a fuller understanding of EHEC-associated diseases.  相似文献   

19.
Shiga toxin-producing E. coli O157 and non-O157 are important emergance pathogens that can cause diarrhea and hemorrhagic colitis with life-threatening complications, such as hemolytic uremic syndrome (HUS). A few cases of EHEC infections are documented per year in Poland. Among them only one patient with EHEC O157 infection developed HUS. We characterized the first VTEC non-O157 strain isolated from child with HUS in Poland. The VTEC O111 strain produced Stx2 which was cytotoxic for Vero cell. Using DNA microarray analysis we have found set of virulence genes in VTEC O111 strain as: stx2A, stx2B, ehly, eae, tir tccP espA, espJ, cif nleA, nleB, lpfA, iha, efa1, cba. The strain was fenotypic resistant to streptomycin, tetracyclin and sulphonamides (strA, tetA, sul2 genes were detected).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号