首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ABCE1 gene is a member of the ATP-binding cassette (ABC) multigene family and is composed of two nucleotide binding domains and an N-terminal Fe-S binding domain. The ABCE1 gene encodes a protein originally identified for its inhibition of ribonuclease L, a nuclease induced by interferon in mammalian cells. The protein is also required for the assembly of the HIV and SIV gag polypeptides. However, ABCE1 is one of the most highly conserved proteins and is found in one or two copies in all characterized eukaryotes and archaea. Yeast ABCE1/RLI1 is essential to cell division and interacts with translation initiation factors in the assembly of the pre-initiation complex. We show here that the human ABCE1 protein is essential for in vitro and in vivo translation of mRNA and that it binds to eIF2alpha and eIF5. Inhibition of the Xenopus ABCE1 arrests growth at the gastrula stage of development, consistent with a block in translation. The human ABCE1 gene contains 16 introns, and the extremely high degree of amino acid identity allows the evolution of its introns to be examined throughout eukaryotes. The demonstration that ABCE1 plays a role in vertebrate translation initiation extends the known functions of this highly conserved protein. Translation is a highly regulated process important to development and pathologies such as cancer, making ABCE1 a potential target for therapeutics. The evolutionary analysis supports a model in which an ancestral eukaryote had large number of introns and that many of these introns were lost in non-vertebrate lineages.  相似文献   

2.
The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular mechanism has, however, not been elucidated. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines, predicted to coordinate iron-sulfur clusters. Here we present detailed information on the type and on the structural organization of the Fe-S clusters in ABCE1. Based on biophysical, biochemical, and yeast genetic analyses, ABCE1 harbors two essential diamagnetic [4Fe-4S](2+) clusters with different electronic environments, one ferredoxin-like (CPX(n)CX(2)CX(2)C; Cys at positions 4-7) and one unique ABCE1-type cluster (CXPX(2)CX(3)CX(n)CP; Cys at positions 1, 2, 3, and 8). Strikingly, only seven of the eight conserved cysteines coordinating the Fe-S clusters are essential for cell viability. Mutagenesis of the cysteine at position 6 yielded a functional ABCE1 with the ferredoxin-like Fe-S cluster in a paramagnetic [3Fe-4S](+) state. Notably, a lethal mutation of the cysteine at position 4 can be rescued by ligand swapping with an adjacent, extra cysteine conserved among all eukaryotes.  相似文献   

3.
The ABC ATPase RNase-L inhibitor (RLI) emerges as a key enzyme in ribosome biogenesis, formation of translation preinitiation complexes, and assembly of HIV capsids. To help reveal the structural mechanism of RLI, we determined the Mg2+-ADP bound crystal structure of the twin cassette ATPase of P. furiosus RLI at 1.9 A resolution and analyzed functional motifs in yeast in vivo. RLI shows similarities but also differences to known ABC enzyme structures. Twin nucleotide binding domains (NBD1 and NBD2) are arranged to form two composite active sites in their interface cleft, indicating they undergo the ATP-driven clamp-like motion of the NBDs of ABC transporters. An unusual "hinge" domain along the NBD1:NBD2 interface provides a frame for association and possibly ATP-driven conformational changes of the NBDs. Our results establish a first structural basis for ABC domain heterodimers and suggest that RLI may act as mechanochemical enzyme in ribosome and HIV capsid biogenesis.  相似文献   

4.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1-NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments.  相似文献   

5.
ATP-binding cassette (ABC)-type ATPases are chemo-mechanical engines for diverse biological pathways. ABC ATPase domains act not only in ABC transporters but also in DNA mismatch, nucleotide excision and double-strand break repair enzymes, as well as in chromosome segregation. Atomic-resolution crystal structures suggest molecular mechanisms for ABC ATPases and reveal surprisingly significant mechanistic and architectural conservation. This emerging unified structural biochemistry provides general medical and biological insights into how ABC proteins function as chemo-mechanical devices. ATP binding by the signature and Q-loop motifs drives the conformations of substrate-specific domains to accomplish diverse functions in transmembrane transport and DNA repair.  相似文献   

6.
Randak C  Welsh MJ 《Cell》2003,115(7):837-850
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP binding cassette (ABC) transporter family. Like other ABC transporters, it can hydrolyze ATP. Yet while ATP hydrolysis influences channel gating, it has long seemed puzzling that CFTR would require this reaction because anions flow passively through CFTR. Moreover, no other ion channel is known to require the large energy of ATP hydrolysis to gate. We found that CFTR also has adenylate kinase activity (ATP + AMP <=> ADP + ADP) that regulates gating. When functioning as an adenylate kinase, CFTR showed positive cooperativity for ATP suggesting its two nucleotide binding domains may dimerize. Thus, channel activity could be regulated by two different enzymatic reactions, ATPase and adenylate kinase, that share a common ATP binding site in the second nucleotide binding domain. At physiologic nucleotide concentrations, adenylate kinase activity, rather than ATPase activity may control gating, and therefore involve little energy consumption.  相似文献   

7.
Understanding the structure and function of the ATP-binding cassette (ABC) transporters is very important because defects in ABC transporters lie at the root of several serious diseases including cystic fibrosis. MalK, the ATP-binding cassette of the maltose transporter of Escherichia coli, is distinct from most other ATP-binding cassettes in that it contains an additional C-terminal regulatory domain. The published structure of a MalK dimer is elongated with C-terminal domains at opposite poles (Diederichs, K., Diez, J., Greller, G., Muller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W., and Welte, W. (2000) EMBO J. 19, 5951-5961). Some uncertainty exists as to whether the orientation of MalK in the dimer structure is correct. Superpositioning of the N-terminal domains of MalK onto the ATP-binding domains of an alternate ABC dimer, in which ATP is bound along the dimer interface between Walker A and LSGGQ motifs, places both N- and C-terminal domains of MalK along the dimer interface. Consistent with this model, a cysteine substitution at position 313 in the C-terminal domain of an otherwise cysteine-free MalK triggered disulfide bond formation between two MalK subunits in an intact maltose transporter. Disulfide bond formation did not inhibit the function of the transporter, suggesting that the C-terminal domains of MalK remain in close proximity throughout the transport cycle. Enzyme IIAglc still inhibited the ATPase activity of the disulfide-linked transporter indicating that the mechanism of inducer exclusion was unaffected. These data support a model for ATP hydrolysis in which the C-terminal domains of MalK remain in contact whereas the N-terminal domains of MalK open and close to allow nucleotide binding and dissociation.  相似文献   

8.
In Escherichia coli K-12, the RecA- and transposase-independent precise excision of transposons is thought to be mediated by the slippage of the DNA polymerase between the two short direct repeats that flank the transposon. Inactivation of the uup gene, encoding an ATP-binding cassette (ABC) ATPase, led to an important increase in the frequency of precise excision of transposons Tn10 and Tn5 and a defective growth of bacteriophage Mu. To provide insight into the mechanism of Uup in transposon excision, we purified this protein, and we demonstrated that it is a cytosolic ABC protein. Purified recombinant Uup binds and hydrolyzes ATP and undergoes a large conformational change in the presence of this nucleotide. This change affects a carboxyl-terminal domain of the protein that displays predicted structural homology with the socalled little finger domain of Y family DNA polymerases. In these enzymes, this domain is involved in DNA binding and in the processivity of replication. We show that Uup binds to DNA and that this binding is in part dependent on its carboxyl-terminal domain. Analysis of Walker motif B mutants suggests that ATP hydrolysis at the two ABC domains is strictly coordinated and is essential for the function of Uup in vivo.  相似文献   

9.
Heterologous expression of domains of eukaryotic proteins is frequently associated with formation of inclusion bodies, consisting of aggregated mis-folded protein. This phenomenon has proved a significant barrier to the characterization of domains of eukaryotic ATP binding cassette (ABC) transporters. We hypothesized that the solubility of heterologously expressed nucleotide binding domains (NBDs) of ABC transporters is dependent on the definition of the domain boundaries. In this paper we have defined a core NBD, and tested the effect of extensions to and deletions of this core domain on protein expression. Of 10 NBDs constructed, only one was expressed as a soluble protein in Escherichia coli, with expression of the remaining NBDs being associated with inclusion body formation. The soluble NBD protein we have obtained corresponds to residues 386-632 of P-glycoprotein and represents an optimally defined domain. The NBD has been isolated and purified to 95% homogeneity by a two-step purification protocol, involving affinity chromatography and gel filtration. Although showing no detectable ATP hydrolysis, the protein retains specific ATP binding and has a secondary structure compatible with X-ray crystallographic data on bacterial NBDs. We have interpreted our results in terms of homology models, which suggest that the N-terminal NBD of P-glycoprotein can be produced as a stable, correctly folded, isolate domain with judicious design of the expression construct.  相似文献   

10.
节肢动物ABC转运蛋白及其介导的杀虫剂抗性   总被引:1,自引:0,他引:1  
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter),简称ABC转运蛋白(ABC transporter),是继细胞色素P450单加氧酶、羧酸酯酶、谷胱甘肽S-转移酶之后又一类参与解毒作用的重要蛋白家族,因其在杀虫剂解毒等方面起着非常重要的作用,近年来逐渐受到广泛关注。ABC转运蛋白是一大类跨膜蛋白,其核心结构通常由4个结构域组成,包括2个高度疏水的跨膜结构域(transmembrane domains , TMD)和2个核苷酸结合域(nucleotide binding domains, NBD)。根据序列相似性和保守结构域,可以把ABC转运蛋白家族分为8个亚家族,每个亚家族的成员数及功能不同。这类蛋白在各种生物体内均有分布,其主要功能包括转运物质、信号传导、细胞表面受体及参与细胞内DNA修复,转录及调节基因的表达过程等。此外,近年来的研究表明,ABC转运蛋白的突变或过表达不仅与节肢动物对化学农药的抗药性密切相关,而且在抗Bt毒素方面也起着非常重要的作用,对转Bt作物造成严重威胁。本文综述了节肢动物ABC转运蛋白的结构,ATP水解介导的作用机制,亚家族的分类、结构及生理功能,以及由ABC转运蛋白介导的抗药性研究进展,旨在深入了解ABC转运蛋白的研究现状及其在节肢动物抗药性方面的作用,为阐明节肢动物抗药性机制提供新的理论依据,对改进农业害虫的抗性监测和治理策略也具有一定的指导意义。  相似文献   

11.
The dimerization of their two nucleotide binding domains (NBDs) in a so-called "nucleotide-sandwich" is the hallmark of ATP cassette binding (ABC) proteins and the basis of their catalytic activities. The major disease-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7), deletion of Phe508 in NBD1, does not grossly alter the structure of that domain but prevents conformational maturation of the whole CFTR protein, possibly by disrupting the native interaction between NBD1 and NBD2. However, the role of inter-domain interactions in CFTR folding has been brought into question by a recent report that all CFTR domains fold independently. Here we show that in addition to domain folding, correct inter-domain assembly is essential to form a stable unit that satisfies endoplasmic reticulum (ER) quality control. N-terminal domains depend on their more C-terminal neighbors, most essentially the second membrane-spanning domain (MSD2) but significantly, not NBD2. Wild-type C-terminal truncation constructs, completely devoid of NBD2 are transported out of the ER and to the cell surface where they form characteristic CFTR chloride channels with low open probability. The DeltaNBD2 wild-type protein matures and has similar stability as its full-length counterpart. Therefore, the catalytically crucial inter-NBD associations are not required to satisfy ER quality control mechanisms. The DeltaF508 mutation arrests the maturation of DeltaNBD2 just as it does full-length CFTR, indicating that DeltaF508 perturbs other portions of the molecule in addition to NBD2. We find that the mutation prevents formation of a compact MSD1, reflected in its susceptibility to protease digestion. This perturbation of MSD1 may in turn prevent its normal integration with MSD2. The dispensability of NBD2 in the folding of more N-terminal domains stands in contrast to the known hypersensitivity to proteolysis of NBD2 in the DeltaF508 protein.  相似文献   

12.
The ATP binding cassette (ABC) transporter, multidrug resistance protein 1 (MRP1/ABCC1), transports a broad spectrum of conjugated and unconjugated compounds, including natural product chemotherapeutic agents. In this study, we have investigated the importance of the COOH-terminal region of MRP1 for transport activity and basolateral plasma membrane trafficking. The COOH-terminal regions of some ABCC proteins have been implicated in protein trafficking, but the function of this region of MRP1 has not been defined. In contrast to results obtained with other ABCC proteins, we found that the COOH-proximal 30 amino acids of MRP1 can be removed without affecting trafficking to basolateral membranes. However, the truncated protein is inactive. Furthermore, removal of as few as 4 COOH-terminal amino acids profoundly decreases transport activity. Although amino acid sequence conservation of the COOH-terminal regions of ABC proteins is low, secondary structure predictions indicate that they consist of a broadly conserved helix-sheet-sheet-helix-helix structure. Consistent with a conservation of secondary and tertiary structure, MRP1 hybrids containing the COOH-terminal regions of either the homologous MRP2 or the distantly related P-glycoprotein were fully active and trafficked normally. Using mutated proteins, we have identified structural elements containing five conserved hydrophobic amino acids that are required for activity. We show that these are important for binding and hydrolysis of ATP by nucleotide binding domain 2. Based on crystal structures of several ABC proteins, we suggest that the conserved amino acids may stabilize a helical bundle formed by the COOH-terminal three helices and may contribute to interactions between the COOH-terminal region and the protein's two nucleotide binding domains.  相似文献   

13.
The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.  相似文献   

14.
As in other adenine nucleotide binding cassette (ABC) proteins the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR) bind and hydrolyze ATP and in some manner regulate CFTR ion channel gating. Unlike some other ABC proteins, however, there are preliminary indications that the two domains of CFTR are nonequivalent in their nucleotide interactions (Szabo, K., Szakacs, G., Hegeds, T., and Sarkadi, B. (1999) J. Biol. Chem. 274, 12209-12212; Aleksandrov, L., Mengos, A., Chang, X., Aleksandrov, A., and Riordan, J. R. (2001) J. Biol. Chem. 276, 12918-12923). We have now characterized the interactions of the 8-azido-photoactive analogues of ATP, ADP, and 5'-adenyl-beta,gamma-imidodiphosphate (AMP-PNP) with the two domains of functional membrane-bound CFTR. The results show that the two domains appear to act independently in the binding and hydrolysis of 8-azido-ATP. At NBD1 binding does not require a divalent cation. This binding is followed by minimal Mg(2+)-dependent hydrolysis and retention of the hydrolysis product, 8-azido-ADP, but not as a vanadate stabilized post-hydrolysis transition state complex. In contrast, at NBD2, MgN(3)ATP is hydrolyzed as rapidly as it is bound and the nucleoside diphosphate hydrolysis product dissociates immediately. Confirming this characterization of NBD1 as a site of more stable nucleotide interaction and NBD2 as a site of fast turnover, the non-hydrolyzable N(3)AMP-PNP bound preferentially to NBD1. This demonstration of NBD2 as the rapid nucleotide turnover site is consistent with the strong effect on channel gating kinetics of inactivation of this domain by mutagenesis.  相似文献   

15.
The sulfonylurea receptor 2A (SUR2A) is an ATP-binding cassette (ABC) protein that forms the regulatory subunit of ATP-sensitive potassium (K(ATP)) channels in the heart. ATP binding and hydrolysis at the SUR2A nucleotide binding domains (NBDs) control gating of K(ATP) channels, and mutations in the NBDs that affect ATP hydrolysis and cellular trafficking cause cardiovascular disorders. To date, there is limited information on the SUR2A NBDs and the effects of disease-causing mutations on their structure and interactions. Structural and biophysical studies of NBDs, especially from eukaryotic ABC proteins like SUR2A, have been hindered by low solubility of the isolated domains. We hypothesized that the solubility of heterologously expressed SUR2A NBDs depends on the precise definition of the domain boundaries. Putative boundaries of SUR2A NBD1 were identified by structure-based sequence alignments and subsequently tested by exploring the solubility of SUR2A NBD1 constructs with different N and C termini. We have determined boundaries of SUR2A NBD1 that allow for soluble heterologous expression of the protein, producing a folded domain with ATP binding activity. Surprisingly, our alignment and screening data indicate that SUR2A NBD1 contains two putative, previously unidentified, regulatory elements: a large insert within the β-sheet subdomain and a C-terminal extension. Our approach, which combines the use of structure-based sequence alignments and predictions of disordered regions combined with biochemical and biophysical studies, may be applied as a general method for developing suitable constructs of other NBDs of ABC proteins.  相似文献   

16.
Biswas-Fiss EE 《Biochemistry》2006,45(11):3813-3823
We report here a novel regulation of the ATPase activity of the human retina specific ATP binding cassette transporter (ABC), ABCR, by nucleotide binding domain interactions. We also present evidence that recombinant nucleotide binding domains of ABCR interact in vitro in the complete absence of transmembrane domains (TMDs). Although similar domain-domain interactions have been described in other ABC transporters, the roles of such interactions on the enzymatic mechanisms of these transporters have not been demonstrated experimentally. A quantitative analysis of the in vitro interactions as a function of the nucleotide-bound state demonstrated that the interaction takes place in the absence of nucleotide as well as in the presence of ATP and that it only attenuates in the ADP-bound state. Analysis of the ATPase activities of these proteins in free and complex states indicated that the NBD1-NBD2 interaction significantly influences the ATPase activity. Further investigation, using site-specific mutants, showed that mutations in NBD2 but not NBD1 led to the alteration of the ATPase activity of the NBD1.NBD2 complex and residue Arg 2038 is critical to this regulation. These data indicate that changes in the oligomeric state of the nucleotide binding domains of ABCR are coupled to ATP hydrolysis and might represent a possible signal for the TMDs of ABCR to export the bound substrate. Furthermore, the data support a mechanistic model in which, upon binding of NBD2, NBD1 binds ATP but does not hydrolyze it or does so with a significantly reduced rate.  相似文献   

17.
18.
We present an overview of the architecture of ATP-binding cassette (ABC) transporters and dissect the systems in core and accessory domains. The ABC transporter core is formed by the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) that constitute the actual translocator. The accessory domains include the substrate-binding proteins, that function as high affinity receptors in ABC type uptake systems, and regulatory or catalytic domains that can be fused to either the TMDs or NBDs. The regulatory domains add unique functions to the transporters allowing the systems to act as channel conductance regulators, osmosensors/regulators, and assemble into macromolecular complexes with specific properties.  相似文献   

19.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.  相似文献   

20.
Frelet A  Klein M 《FEBS letters》2006,580(4):1064-1084
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号