首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeat-expansion mutations cause 13 autosomal dominant neurodegenerative disorders falling into three groups. Huntington's disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and spinocerebellar ataxias (SCAs) types 1, 2, 3, 7 and 17 are each caused by a CAG repeat expansion that encodes polyglutamine. Convergent lines of evidence demonstrate that neurodegeneration in these diseases is a consequence of the neurotoxic effects of abnormally long stretches of glutamines. How polyglutamine induces neurodegeneration, and why neurodegeneration occurs in only select neuronal populations, remains a matter of intense investigation. SCA6 is caused by a CAG repeat expansion in CACNA1A, a gene that encodes a subunit of the P/Q-type calcium channel. The threshold length at which the repeat causes disease is much shorter than in the other polyglutamine diseases, and neurodegeneration may arise from expansion-induced change of function in the calcium channel. Huntington's disease-like 2 (HDL2) and SCAs 8, 10 and 12 are rare disorders in which the repeats (CAG, CTG or ATTCT) are not in protein-coding regions. Investigation into these diseases is still at an early stage, but it is now reasonable to hypothesise that the net effect of each expansion is to alter gene expression. The different pathogenic mechanisms in these three groups of diseases have important implications for the development of rational therapeutics.  相似文献   

2.
Kimura Y  Kakizuka A 《IUBMB life》2003,55(6):337-345
The polyglutamine diseases, a group of diseases currently thought to consist of nine inherited neurodegenerative diseases, are caused by the expansion of unstable CAG trinucleotide repeats that code for polyglutamine tracts in the responsible genes. These diseases are now recognized as being of a type with conformationally abnormal or amyloid-related proteins, and thus are called 'conformational diseases'. Recently, many studies using cell cultures and model organisms have suggested that the two major machineries for protein quality control (the molecular chaperone and the protein degradation machineries) play important roles in the pathogenesis of the polyglutamine diseases. Interestingly, molecular chaperones have been shown to behave in totally different ways in these studies, namely in suppressing as well as enhancing neurodegeneration or cell death. These apparently opposite actions of molecular chaperones suggest that a certain balance between the activities of molecular chaperones and the expression level of polyglutamine is an important determinant of the pathogenesis. In this review, we summarize recent findings on such ambiguous effects of molecular chaperones on polyglutamine diseases, and discuss possible mechanisms by which molecular chaperones, especially VCP, are involved in the pathogenesis.  相似文献   

3.
Polyglutamine diseases are a class of inherited neurodegenerative disorders caused by the expansion of a polyglutamine tract within the respective proteins. Clinical studies have revealed that the forming of neuronal intranuclear inclusions by the disease protein is a common pathological feature of polyglutamine diseases. Although there has been considerable progress in understanding polyglutamine diseases, many questions regarding their mechanism are still unanswered. The finding that molecular chaperones are associated with ubiquitinated intranuclear inclusions clearly indicates a crucial role of molecular chaperones in the generation of these fatal diseases. Molecular and chemical chaperones have been found to be a good agent for suppressing many polyglutamine diseases in several animal models. In this review, I discuss the roles of the ubiquitin-proteasome pathway and molecular chaperones in the development of polyglutamine diseases and probable approach for the prevention of many of these fatal disorders using molecular chaperones as a therapeutic agent. Newly found chemical chaperones have been demonstrated to be potentially useful and could be used as a therapeutic strategy in preventing many versions of polyglutamine diseases.  相似文献   

4.
Cell death in polyglutamine diseases   总被引:11,自引:0,他引:11  
An increasing number of inherited neurodegenerative diseases are known to be caused by trinucleotide repeat expansions in the respective genes. At least nine disorders result from a CAG trinucleotide repeat expansion which is translated into a polyglutamine stretch in the respective proteins: Huntington's disease (HD), dentatorubral pallidolysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and several of the spinocerebellar ataxias (SCA1, 2, 3, 6, 7 and 12). Although the molecular steps leading to the specific neuropathology of each disease are unknown and are still under intensive investigation, there is increasing evidence that some CAG repeat disorders involve the induction of apoptotic mechanisms. This review summarizes the clinical and genetic features of each CAG repeat disorder and focuses on the common mechanistic steps involved in the disease progression of these so-called polyglutamine diseases. Among the common molecular features the formation of intranuclear inclusions, the recruitment of interacting polyglutamine-containing proteins, the involvement of the proteasome and molecular chaperones, and the activation of caspases are discussed with regard to their potential implication for the induction of cell death.  相似文献   

5.
Bilen J  Bonini NM 《PLoS genetics》2007,3(10):1950-1964
Spinocerebellar ataxia type-3 (SCA3) is among the most common dominantly inherited ataxias, and is one of nine devastating human neurodegenerative diseases caused by the expansion of a CAG repeat encoding glutamine within the gene. The polyglutamine domain confers toxicity on the protein Ataxin-3 leading to neuronal dysfunction and loss. Although modifiers of polyglutamine toxicity have been identified, little is known concerning how the modifiers function mechanistically to affect toxicity. To reveal insight into spinocerebellar ataxia type-3, we performed a genetic screen in Drosophila with pathogenic Ataxin-3-induced neurodegeneration and identified 25 modifiers defining 18 genes. Despite a variety of predicted molecular activities, biological analysis indicated that the modifiers affected protein misfolding. Detailed mechanistic studies revealed that some modifiers affected protein accumulation in a manner dependent on the proteasome, whereas others affected autophagy. Select modifiers of Ataxin-3 also affected tau, revealing common pathways between degeneration due to distinct human neurotoxic proteins. These findings provide new insight into molecular pathways of polyQ toxicity, defining novel targets for promoting neuronal survival in human neurodegenerative disease.  相似文献   

6.
Autosomal dominant spinocerebellar ataxias (SCAs) are a complex group of debilitating and neurodegenerative diseases that affect the cerebellum and its main connections and characterized by a generalized incoordination of gait, speech, and limb movements. In general, the onset of SCAs occurs during adult life and shows great clinical heterogeneity. Currently, the mutations responsible for different types of SCAs have been localized in different regions of the genome, and most of them were already mapped and cloned. Several pieces of evidence suggest that all these diseases share the same molecular mechanism and physiopathological processes. CAG trinucleotide expansion is a common mutational basis of several of these disorders. An expanded polyglutamine tract may become a toxic product when located within the coding region of the gene. The SCA genes, recent patents and the molecular aspects of these disorders are presented in this review. Our knowledge of the molecular mechanisms of SCAs is rapidly expanding, and the development of important studies is bringing hope for effective therapies.  相似文献   

7.
To date, eight neurodegenerative disorders, including Huntington's disease and dentatorubral-pallidoluysian atrophy, have been identified to be caused by expansion of a CAG repeat coding for a polyglutamine (polyQ) stretch. It is, however, unclear how polyQ expansion mediates neuronal cell death observed in these disorders. Here, we have established a tetracycline-regulated expression system producing 19 and 56 repeats of glutamine fused with green fluorescent protein. Induced expression of the 56 polyQ, but not of the 19 polyQ stretch caused marked nuclear aggregation and apoptotic morphological changes of the nucleus. In vitro enzyme assays and Western blotting showed that polyQ56 expression sequentially activated initiator and effector caspases, such as caspase-8 or -9, and caspase-3, respectively. Furthermore, using cell-permeable fluorogenic substrate, the activation of caspase-3-like proteases was demonstrated in intact cells with aggregated polyQ. This is the first direct evidence that the expression of extended polyQ activates caspases and together with the previous findings that some of the products of genes responsible for CAG repeat diseases are substrates of caspase-3 indicates an important role of caspases in the pathogenesis of these diseases.  相似文献   

8.
Several neurodegenerative diseases including Huntington disease, Machado-Joseph disease and spinocerebellar ataxias type 1 are caused by expansion of a polyglutamine tract within their respective gene products. In order to assess the role of the tract, 293T cells were transfected with plasmids that contain various lengths of CAG repeat encoding polyglutamine without the repeat disorder proteins: (CAG)27, (CAG)40, (CAG)80, (CAG)130, and (CAG)180. Except for (CAG)27, and (CAG)40, 293T cells showed a common set of morphological alterations such as shrinkage, rounding and surface blebbing when the expanded stretch was expressed. In addition, nuclear staining experiments showed chromatin condensation in COS-7 cells transfected with the vectors containing expanded CAG repeats. These results indicate that expanded polyglutamine itself is able to induce cell death, suggesting existence of a common molecular mechanism in the etiology of neurodegenerative polyglutamine diseases.  相似文献   

9.
Huntington's disease (HD) is an autosomal dominant disorder in which there is progressive neurodegeneration producing motor, cognitive and psychiatric symptoms. HD is caused by a trinucleotide (CAG) repeat mutation, encoding an expanded polyglutamine tract in the huntingtin protein. At least eight other neurodegenerative diseases are caused by CAG/glutamine repeat expansions in different genes. Recent evidence suggests that environmental factors can modify the onset and progression of Huntington's disease and possibly other neurodegenerative disorders. This review outlines possible molecular and cellular mechanisms mediating the polyglutamine-induced toxic 'gain of function' and associated gene-environment interactions in HD. Key aspects of pathogenesis shared with other neurodegenerative diseases may include abnormal protein-protein interactions, selective disruption of gene expression and 'pathological plasticity' of synapses in specific brain regions. Recent discoveries regarding molecular mechanisms of pathogenesis are guiding the development of new therapeutic approaches. Knowledge of gene-environment interactions, for example, could lead to development of 'enviromimetics' which mimic the beneficial effects of specific environmental stimuli. The effects of environmental enrichment on brain and behaviour will also be discussed, together with the general implications for neuroscience research involving animal models.  相似文献   

10.
11.
Neurodegenerative trinucleotide (CAG) repeat disorders are caused by the expansion of polyglutamine tracts within the disease proteins. Some of these proteins have an unknown function. How expanded polyglutamine causes target neurons to degenerate is not clear. Recent evidence suggests that intercellular miscommunication may contribute to polyglutamine pathogenesis in CAG repeat disorders. Polyglutamine induced degeneration of the target neuron can be mediated via glia-neuron interactions. Here we hypothesize that during the neurodegenerative process the failure of cell-cell interactions have more severe consequences than alterations in intracellular neuron biology. We further believe that bidirectional communication between neurons and glia is a prerequisite for the normal development and function of either cell type. Understanding intercellular signaling mechanisms such as glial trophic factors and their receptors, cell adhesion or other well-defined signaling molecules provides opportunities for developing potential therapies.  相似文献   

12.
Lumeng CN  Saltiel AR 《Autophagy》2006,2(3):250-253
Macroautophagy has been shown to participate in the degradation and clearance of polyglutamine (polyQ) tract-containing proteins generated by trinucleotide repeat expansion mutations. Large expansions are the genetic cause of diseases such as Huntington's Disease that lead to neuronal dysfunction due to polyQ protein aggregates. Recently, a functional screen performed by Yamamoto et al to investigate proteins that regulate such autophagic processes revealed a novel role for insulin signaling in the promotion of autophagy of mutant protein aggregates. This suggests that insulin/insulin-like growth factor signaling pathways not only prevent the induction of autophagy, but paradoxically may promote autophagy of deleterious proteins in certain circumstances.  相似文献   

13.
14.
What transgenic mice tell us about neurodegenerative disease   总被引:6,自引:0,他引:6  
The recent broad advance in our understanding of human neurodegenerative diseases is based on the application of a new molecular approach. Through linkage analysis, the genes responsible for Huntington's disease, the spinocerebellar ataxias, and familial forms of Alzheimer's disease and amyotrophic lateral sclerosis (ALS) have been identified and cloned. The characterization of pathogenic mutations in such genes allows the creation of informative transgenic mouse models as, without exception, the genetic forms of adult neurodegenerative disease are due to toxicity of the mutant protein. Transgenic models provide insight into the oxidative mechanisms in ALS pathogenesis, the pathogenicity of expanded polyglutamine tracts in CAG triplet repeat disorders, and amyloidogenesis in Alzheimer's disease. Although such models have their limitations, they currently provide the best entry point for the study of human neurodegenerative diseases.  相似文献   

15.
16.
17.
In recent years, nine neurodegenerative diseases have been found to be caused by the expansion of a CAG-triplet repeat in the coding region of the respective genes, resulting in lengthening of an otherwise harmless polyglutamine tract in the gene products. To facilitate structural studies of these disease mechanisms, a general protocol is described that allows site-specific mutations to be introduced into the polyglutamine tract. Based on 'cassette mutagenesis', this protocol involves engineering unique restriction sites into the flanking regions of the CAG repeat and subsequently replacing the wild-type CAG repeat with a double-stranded synthetic DNA fragment containing the desired mutations. This method was applied to the spinocerebellar ataxin-3 protein, such that the wild-type amino acid sequence -Q(3)KQ(22)- was replaced by a -Q(9)CQ(9)- sequence. In this case, the incorporated cysteine residue can be exploited for various chemical modifications, lending the host glutamine repeat to many structural and biophysical techniques for the resolution of a specific residue. The method reported here bypasses many problems that can arise from PCR-based mutagenesis methods.  相似文献   

18.
Huntington's disease (HD) is an inherited progressive neurodegenerative disease caused by the expansion of a polyglutamine repeat sequence within a novel protein. Recent work has shown that abnormal intranuclear inclusions of aggregated mutant protein within neurons is a characteristic feature shared by HD and several other diseases involving glutamine repeat expansion. This suggests that in each of the these disorders the affected nerve cells degenerate as a result of these abnormal inclusions. A transgenic mouse model of HD has been generated by introducing exon 1 of the HD gene containing a highly expanded CAG sequence into the mouse germline. These mice develop widespread neuronal intranuclear inclusions and neurodegeneration specifically within those areas of the brain known to degenerate in HD. We have investigated the sequence of pathological changes that occur after the formation of nuclear inclusions and that precede neuronal cell death in these cells. Although the relation between inclusion formation and neurodegeneration has recently been questioned, a full characterization of the pathways linking protein aggregation and cell death will resolve some of these controversies and will additionally provide new targets for potential therapies.  相似文献   

19.
20.
A growing number of neurodegenerative diseases are caused by expansion of CAG trinucleotide repeats coding for polyglutamine. The presence of intranuclear inclusions in the affected neuronal cells has suggested a mechanism for pathogenesis based on protein misfolding and aggregation. Detailed understanding of these phenomena is therefore crucial in order to rationalize different phases of the diseases. In the past decade, a few studies have focused on the structural properties of polyglutamine and on the molecular bases of the aggregation process. Most of these studies have been performed on polyglutamine peptides and protein models. Only one report is currently available on the characterization of a full-length polyglutamine protein. The structural hypotheses resulting from these studies are reviewed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号