首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Metabolites of lutein are highly concentrated in the human macula and are known to provide protection against age-related macular degeneration. The aim of this investigation was to characterize the in vitro oxidation products of lutein obtained through photo-oxidation and to compare them with biologically transformed dietary lutein in intestine, plasma, liver, and eyes of rats. In vivo studies involved feeding rats a diet devoid of lutein for 2 weeks to induce deficiency. Rats were divided into two equal groups (n=6/group) and received either micellar lutein by gavage for 10 days or diet supplemented with fenugreek leaves as a lutein source for 4 weeks. Lutein metabolites/oxidation products obtained from in vivo and in vitro studies were characterized by HPLC and LC-MS (APCI) techniques to elucidate their structure. The characteristic fragmented ions resulting from photo-oxidation of lutein were identified as 523 (M(+)+H(+)-3CH(3)), 476 (M(+)+H(+)-6CH(3)), and 551 (M(+)+H(+)-H(2)O). In the eyes, the fragmented molecules resulting from lutein were 13-Z lutein, 13'-Z lutein, 13-Z zeaxanthin, all-E zeaxanthin, 9-Z lutein, 9'-Z lutein, and 3'-oxolutein. Epoxycarotenoids were identified in liver and plasma, whereas anhydrolutein was identified in intestine. This study emphasizes the essentiality of dietary lutein to maintain its status in the retina.  相似文献   

2.
Changes in pigment composition during light-dependent chloroplast differentiation in mutant C-6D of Scenedesmus obliquus were followed by HPLC. The system used enables the separation and quantitative determination of five xanthophylls (neoxanthin, violaxanthin, antheraxanthin, lutein and zeaxanthin), α- and β-carotene and chlorophyll a and b (and their epimeric forms). Dark-grown cells of the mutant contain only chlorophyll a, traces of chlorophyll b and acyclic precursors of carotenoids. During subsequent illumination, precursors decrease and high amounts of xanthophylls, carotenes and chlorophyll a and b are formed. Dark-grown cultures of mutant C-6D show high photosystem I-activity and contain the photosystem I-complex CP I, but lack photosystem II-activity, the photosystem II-complex CPa and the LHCP. Immediately after transfer to light, photosystem II-activity increases rapidly, as also do the amounts of CPa and lutein. Under anaerobiosis no lutein and PS II-activity can be detected. This indicates a role of lutein in the assembly of an active photosystem II-complex. All other xanthophylls and the LHCP exhibit high rates of synthesis only after a delay of about 1 hour. Thus, our results reveal an asynchronous fashion of formation of CPa and LHCP.  相似文献   

3.
Lutein and zeaxanthin are two dietary carotenoids that compose the macular pigment of the primate retina. Another carotenoid, meso-zeaxanthin, is formed from lutein in the retina. A membrane location is one possible site where these dipolar, terminally dihydroxylated carotenoids, named macular xanthophylls, are accumulated in the nerve fibers and photoreceptor outer segments. Macular xanthophylls are oriented perpendicular to the membrane surface, which ensures their high solubility, stability, and significant effects on membrane properties. It was recently shown that they are selectively accumulated in membrane domains that contain unsaturated phospholipids, and thus are located in the most vulnerable regions of the membrane. This location is ideal if they are to act as lipid antioxidants, which is the most accepted mechanism through which lutein and zeaxanthin protect the retina from age-related macular degeneration. In this mini-review, we examine published data on carotenoid-membrane interactions and present our hypothesis that the specific orientation and location of macular xanthophylls maximize their protective action in membranes of the eye retina.  相似文献   

4.
Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.  相似文献   

5.
Accumulation of macular xanthophylls in unsaturated membrane domains   总被引:1,自引:0,他引:1  
The distribution of macular xanthophylls, lutein and zeaxanthin, between domains formed in membranes made from an equimolar ternary mixture of dioleoylphosphatidylcholine/sphingomyelin/cholesterol, called a raft-forming mixture, was investigated. In these membranes, two domains are formed: the raft domain enriched in saturated lipids and cholesterol (detergent-resistant membranes, DRM), and the bulk domain enriched in unsaturated lipids (detergent-soluble membranes, DSM). These membrane domains have been separated using cold Triton X-100 extraction from membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that xanthophylls are substantially excluded from DRM and remain concentrated in DSM. Concentrations of xanthophylls in DRM and DSM calculated as the mole ratio of either xanthophyll to phospholipid were 0.005 and 0.03, respectively, and calculated as the mole ratio of either xanthophyll to total lipid (phospholipid + cholesterol) were 0.003 and 0.025, respectively. Thus, xanthophylls are over eight times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. It was also demonstrated using saturation-recovery EPR that at 1 mol%, neither lutein nor zeaxanthin affect the formation of membrane domains. The location of xanthophylls in domains formed from unsaturated lipids is ideal if they are to act as a lipid antioxidant, which is the most accepted mechanism through which lutein and zeaxanthin protect the retina from age-related macular diseases.  相似文献   

6.
Two main xanthophyll pigments are present in the membranes of macula lutea of the vision apparatus of primates, including humans: lutein and zeaxanthin. Protection against oxidative damage of the lipid matrix and screening against excess radiation are the most likely physiological functions of these xanthophyll pigments in macular membranes. A protective effect of lutein and zeaxanthin against oxidative damage of egg yolk lecithin liposomal membranes induced by exposure to UV radiation and incubation with 2, 2'-azobis(2-methypropionamidine)dihydrochloride, a water-soluble peroxidation initiator, was studied. Both lutein and zeaxanthin were found to protect lipid membranes against free radical attack with almost the same efficacy. The UV-induced lipid oxidation was also slowed down by lutein and zeaxanthin to a very similar rate in the initial stage of the experiments (5-15 min illumination) but zeaxanthin appeared to be a better photoprotector during the prolonged UV exposure. The decrease in time of a protective efficacy of lutein was attributed to the photooxidation of the carotenoid itself. Both lutein and zeaxanthin were found to slightly modify mechanical properties of the liposomes in a very similar fashion as concluded on the basis of H(1) NMR and diffractometric measurements of pure egg yolk membranes and membranes pigmented with the xanthophylls. Linear dichroism analysis of the mean orientation of the dipole transition moment of the xanthophylls incorporated to the lipid multibilayers revealed essentially different orientation of zeaxanthin and lutein in the membranes. Zeaxanthin was found to adopt roughly vertical orientation with respect to the plane of the membrane. The relatively large orientation angle between the transition dipole and the axis normal to the plane of the membrane found in the case of lutein (67 degrees in the case of 2 mol% lutein in EYPC membranes) was interpreted as a representation of the existence of two orthogonally oriented pools of lutein, one following the orientation of zeaxanthin and the second parallel with respect to the plane of the membrane. The differences in the protective efficacy of lutein and zeaxanthin in lipid membranes were attributed to a different organization of zeaxanthin-lipid and lutein-lipid membranes.  相似文献   

7.
The pigment composition of the light-harvesting complexes (LHCs) of higher plants is highly conserved. The bulk complex (LHCIIb) binds three xanthophyll molecules in combination with chlorophyll (Chl) a and b. The structural requirements for binding xanthophylls to LHCIIb have been examined using an in vitro reconstitution procedure. Reassembly of the monomeric recombinant LHCIIb was performed using a wide range of native and nonnative xanthophylls, and a specific requirement for the presence of a hydroxy group at C-3 on a single beta-end group was identified. The presence of additional substituents (e.g. at C-4) did not interfere with xanthophyll binding, but they could not, on their own, support reassembly. cis isomers of zeaxanthin, violaxanthin, and lutein were not bound, whereas all-trans-neoxanthin and different chiral forms of lutein and zeaxanthin were incorporated into the complex. The C-3 and C-3' diols lactucaxanthin (a carotenoid native to many plant LHCs) and eschscholtzxanthin (a retro-carotenoid) both behaved very differently from lutein and zeaxanthin in that they would not support complex reassembly when used alone. Lactucaxanthin could, however, be bound when lutein was also present, and it showed a high affinity for xanthophyll binding site N1. In the presence of lutein, lactucaxanthin was readily bound to at least one lutein-binding site, suggesting that the ability to bind to the complex and initiate protein folding may be dependent on different structural features of the carotenoid molecule. The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed.  相似文献   

8.
The xanthophylls lutein (L) and zeaxanthin (Z) form the macular pigment with the highest density in the macula lutea. We investigated Macular Pigment Optical Density (MPOD) responses to supplementation with identically formulated (Actilease™) L or Z (OPTISHARP™) or L + Z over 6-12 months using doses of 10 or 20 mg/day. MPOD as well as blue light sensitivity in fovea and parafovea were measured monthly by heterochromatic flicker photometry. Average xanthophyll plasma concentrations, analysed monthly by HPLC, increased up to 27-fold. MPOD increased by 15% upon L or L + Z supplementation. Supplementation of Z alone produced similar pigment accumulation in fovea and parafovea, which confounded MPOD measurements. After correction for this, a 14% MPOD increase resulted for Z. Thus, during supplementation with xanthophylls, L is predominantly deposited in the fovea while Z deposition appears to cover a wider retinal area. This may be relevant to health and disease of the retina.  相似文献   

9.
Lutein, zeaxanthin, and the macular pigment   总被引:27,自引:0,他引:27  
The predominant carotenoids of the macular pigment are lutein, zeaxanthin, and meso-zeaxanthin. The regular distribution pattern of these carotenoids within the human macula indicates that their deposition is actively controlled in this tissue. The chemical, structural, and optical characteristics of these carotenoids are described. Evidence for the presence of minor carotenoids in the retina is cited. Studies of the dietary intake and serum levels of the xanthophylls are discussed. Increased macular carotenoid levels result from supplementation of humans with lutein and zeaxanthin. A functional role for the macular pigment in protection against light-induced retinal damage and age-related macular degeneration is discussed. Prospects for future research in the study of macular pigment require new initiatives that will probe more accurately into the localization of these carotenoids in the retina, identify possible transport proteins and mechanisms, and prove the veracity of the photoprotection hypothesis for the macular pigments.  相似文献   

10.
Carotenoid pigments were extracted from 29 feather patches from 25 species of cotingas (Cotingidae) representing all lineages of the family with carotenoid plumage coloration. Using high-performance liquid chromatography (HPLC), mass spectrometry, chemical analysis, and 1H-NMR, 16 different carotenoid molecules were documented in the plumages of the cotinga family. These included common dietary xanthophylls (lutein and zeaxanthin), canary xanthophylls A and B, four well known and broadly distributed avian ketocarotenoids (canthaxanthin, astaxanthin, ??-doradexanthin, and adonixanthin), rhodoxanthin, and seven 4-methoxy-ketocarotenoids. Methoxy-ketocarotenoids were found in 12 species within seven cotinga genera, including a new, previously undescribed molecule isolated from the Andean Cock-of-the-Rock Rupicola peruviana, 3??-hydroxy-3-methoxy-??,??-carotene-4-one, which we name rupicolin. The diversity of cotinga plumage carotenoid pigments is hypothesized to be derived via four metabolic pathways from lutein, zeaxanthin, ??-cryptoxanthin, and ??-carotene. All metabolic transformations within the four pathways can be described by six or seven different enzymatic reactions. Three of these reactions are shared among three precursor pathways and are responsible for eight different metabolically derived carotenoid molecules. The function of cotinga plumage carotenoid diversity was analyzed with reflectance spectrophotometry of plumage patches and a tetrahedral model of avian color visual perception. The evolutionary history of the origin of this diversity is analyzed phylogenetically. The color space analyses document that the evolutionarily derived metabolic modifications of dietary xanthophylls have resulted in the creation of distinctive orange-red and purple visual colors.  相似文献   

11.
Lutein, zeaxanthin, and their metabolites are the xanthophyll carotenoids that form the macular pigment of the human retina. Epidemiological evidence suggests that high levels of these carotenoids in the diet, serum, and macula are associated with a decreased risk of age-related macular degeneration (AMD), and the AREDS2 study is prospectively testing this hypothesis. Understanding the biochemical mechanisms underlying the selective uptakes of lutein and zeaxanthin into the human macula may provide important insights into the physiology of the human macula in health and disease. GSTP1 is the macular zeaxanthin-binding protein, but the identity of the human macular lutein-binding protein has remained elusive. Prior identification of the silkworm lutein-binding protein (CBP) as a member of the steroidogenic acute regulatory domain (StARD) protein family and selective labeling of monkey photoreceptor inner segments with an anti-CBP antibody provided an important clue for identifying the primate retina lutein-binding protein. The homology of CBP with all 15 human StARD proteins was analyzed using database searches, Western blotting, and immunohistochemistry, and we here provide evidence to identify StARD3 (also known as MLN64) as a human retinal lutein-binding protein. Antibody to StARD3, N-62 StAR, localizes to all neurons of monkey macular retina and especially cone inner segments and axons, but does not colocalize with the Mu?ller cell marker, glutamine synthetase. Further, recombinant StARD3 selectively binds lutein with high affinity (K(D) = 0.45 μM) when assessed by surface plasmon resonance (SPR) binding assays. Our results demonstrate previously unrecognized, specific interactions of StARD3 with lutein and provide novel avenues for exploring its roles in human macular physiology and disease.  相似文献   

12.
The dietary carotenoids provide photoprotection to photosynthetic organisms, the eye and the skin. The protection mechanisms involve both quenching of singlet oxygen and of damaging free radicals. The mechanisms for singlet oxygen quenching and protection against free radicals are quite different - indeed, under some conditions, quenching of free radicals can lead to a switch from a beneficial anti-oxidant process to damaging pro-oxidative situation. Furthermore, while skin protection involves β-carotene or lycopene from a tomato-rich diet, protection of the macula involves the hydroxyl-carotenoids (xanthophylls) zeaxanthin and lutein. Time resolved studies of singlet oxygen and free radicals and their interaction with carotenoids via pulsed laser and fast electron spectroscopy (pulse radiolysis) and the possible involvement of amino acids are discussed and used to (1) speculate on the anti- and pro-oxidative mechanisms, (2) determine the most efficient singlet oxygen quencher and (3) demonstrate the benefits to photoprotection of the eye from the xanthophylls rather than from hydrocarbon carotenoids such as β-carotene.  相似文献   

13.
As in humans and monkeys, lutein [(3R,3'R,6'R)-beta,epsilon-carotene-3,3'-diol] and zeaxanthin [a mixture of (3R,3'R)-beta,beta-carotene-3,3'diol and (3R,3'S-meso)-beta,beta-carotene-3,3'-diol] are found in substantial amounts in the retina of the Japanese quail Coturnix japonica. This makes the quail retina an excellent nonprimate small animal model for studying the metabolic transformations of these important macular carotenoids that are thought to play an integral role in protection against light-induced oxidative damage such as that found in age-related macular degeneration (AMD). In this study, we first identified the array of carotenoids present in the quail retina using C30 HPLC coupled with in-line mass spectral and photodiode array detectors. In addition to dietary lutein (2.1%) and zeaxanthin (11.8%), we identified adonirubin (5.4%), 3'-oxolutein (3.8%), meso-zeaxanthin (3.0%), astaxanthin (28.2%), galloxanthin (12.2%), epsilon,epsilon-carotene (18.5%), and beta-apo-2'-carotenol (9.5%) as major ocular carotenoids. We next used deuterium-labeled lutein and zeaxanthin as dietary supplements to study the pharmacokinetics and metabolic transformations of these two ocular pigments in serum and ocular tissues. We then detected and quantitated labeled carotenoids in ocular tissue using both HPLC-coupled mass spectrometry and noninvasive resonance Raman spectroscopy. Results indicated that dietary zeaxanthin is the precursor of 3'-oxolutein, beta-apo-2'-carotenol, adonirubin, astaxanthin, galloxanthin, and epsilon,epsilon-carotene, whereas dietary lutein is the precursor for meso-zeaxanthin. Studies also revealed that the pharmacokinetic patterns of uptake, carotenoid absorption, and transport from serum into ocular tissues were similar to results observed in most human clinical studies.  相似文献   

14.
The qualitative and quantitative carotenoid composition of seven prasinophytes (eight clones) have been examined by chromatographic (TLC and HPLC) and spectroscopic methods (VIS, CD and mass spectra).

The prasinophytes studied fall into two pigment types: (A) those producing common green algal carotenoids (β,β-carotene, β,ε-carotene, lutein, zeaxanthin and the epoxides violaxanthin and neoxanthin) and (B) prasinophytes synthesising carotenoids peculiar to this algal class (prasinoxanthin, anhydroprasinoxanthin, uriolide, anhydrouriolide, micromonal, anhydromicromonal, micromonol, anhydromicromonol and dihydrolutein), where prasinoxanthin is a major carotenoid.

Mantoniella squamata (clone 2) was grown under both low and high light intensity, revealing differences in carotenoid composition. Lutein together with lesser amounts of zeaxanthin and its epoxides were only detected at high light intensity.

Three previously unidentified carotenoids were identified as prasinoxanthin (xanthophyll K), micromonal and dihydrolutein.  相似文献   


15.
A model of photoreceptor outer segment (POS) membranes has been proposed, consisting of an equimolar ternary mixture of 1-palmitoyl-2-docosahexaenoylphosphatidylcholine/distearoylphosphatidylcholine/cholesterol. It was shown that, as in membranes made from the raft-forming mixture, in the model of POS membranes, two domains are formed: the raft domain (detergent resistant membranes, DRM), and the bulk domain (detergent soluble membranes, DSM). Saturation-recovery EPR discrimination by oxygen transport method also demonstrated the presence of two domains in this model system in situ at a wide range of temperatures (10-55 degrees C), showing additionally that neither lutein nor zeaxanthin at 1 mol% affect the formation of these domains. These membrane domains have been separated using cold Triton X-100 extraction from a model of POS membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that the macular xanthophylls lutein and zeaxanthin are substantially excluded from DRM and remain concentrated in DSM, a domain enriched in highly unsaturated docosahexaenoyl acid which is abundant in retina membranes. The concentration of xanthophylls in DRM and DSM calculated as the mol ratio of either xanthophyll to total lipid (phospholipid+cholesterol) was 0.0028 and 0.0391, respectively. Thus, xanthophylls are about 14 times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. The obtained results suggest that in POS membranes macular xanthophylls should also be concentrated in domains enriched in polyunsaturated chains.  相似文献   

16.
Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15′-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9′,10′-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC–MS and GC–MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10′-carotenal, 3-OH-β-apo-10′-carotenal, and β-apo-10′-carotenal, indicating cleavage at both the 9,10 and 9′,10′ carbon–carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10′-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD+, in vitro incubation of 3-OH-β-apo-10′-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10′-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.  相似文献   

17.
The major light-harvesting complex of photosystem II can be reconstituted in vitro from its bacterially expressed apoprotein with chlorophylls a and b and neoxanthin, violaxanthin, lutein, or zeaxanthin as the only xanthophyll. Reconstitution of these one-carotenoid complexes requires low-stringency conditions during complex formation and isolation. Neoxanthin complexes (containing 30-50% of the all-trans isomer) disintegrate during electrophoresis, exhibit a largely reduced resistance against proteolytic attack; in addition, energy transfer from Chl b to Chl a is easily disrupted at elevated temperature. Complexes reconstituted in the presence of either zeaxanthin or lutein contain nearly two xanthophylls per 12 chlorophylls and are more resistant against trypsin. Lutein-LHCIIb also exhibits an intermediate maintenance of energy transfer at higher temperature. Violaxanthin complexes approach a xanthophyll/12 chlorophyll ratio of 3, similar to the ratio in recombinant LHCIIb containing all xanthophylls. On the other hand, violaxanthin-LHCIIb exhibits a low thermal stability like neoxanthin complexes, but an intermediate accessibility towards trypsin, similar to lutein-LHCIIb and zeaxanthin-LHCIIb. Binary competition experiments were performed with two xanthophylls at varying ratios in the reconstitution. Analysis of the xanthophyll contents in the reconstitution products yielded information about relative carotenoid affinities of three assumed binding sites. In lutein/neoxanthin competition experiments, two binding sites showed a strong preference (> 200-fold) for lutein, whereas the third binding site had a higher affinity (25-fold) to neoxanthin. Competition between lutein and violaxanthin gave a similar result, although the specificities were lower: two binding sites have a 36-fold preference for lutein and one has a fivefold preference for violaxanthin. The lowest selectivity was between lutein and zeaxanthin: two binding sites had a fivefold higher affinity for lutein and one has a threefold higher affinity to zeaxanthin.  相似文献   

18.
Human promyelocytic leukemia cells (HL-60 cells) incubated with (24R)-hydroxy[26,27-methyl-3H]calcidiol (0.2 microCi) or non-radioactive (24R)-hydroxycalcidiol (370 micrograms) produced significant quantities of two new vitamin D3 (calciol) metabolites. The metabolites were isolated from HL-60 cell culture media by methanol/chloroform extraction and a series of chromatographic procedures. The two new metabolites were identified as (5Z)- and (5E)-(24R)-19-nor-10-oxo-24-hydroxycalcidiol by HPLC analysis, ultraviolet absorption spectrophotometry, mass spectrometry and Fourier-transform infrared spectrophotometry. According to the isolation and purification procedures, the total amounts of 3.04 micrograms (5Z)-(24R)-19-nor-10-oxo-24-hydroxycalcidiol (lambda max = 310 nm, epsilon = 17070 M-1 cm-1) and 8.89 micrograms (5E)-(24R)-19-nor-10-oxo-24-hydroxycalcidiol (lambda max = 312 nm, e = 24,500 M-1 cm-1) were calculated, assuming an Mr of 418. The activity of 19-nor-10-oxo-(24R)-hydroxycalcidiol to promote HL-60 cell differentiation was higher than the activity of the precursor (24R)-hydroxycalcidiol suggesting a possible biological action of this metabolite in HL-60 cells.  相似文献   

19.
Lutein and zeaxanthin cannot be synthesized de novo in humans, and although lutein is abundant in fruit and vegetables, good dietary sources of zeaxanthin are scarce. Certain corn varieties provide adequate amounts because the ratio of endosperm β : ε lycopene cyclase activity favours the β‐carotene/zeaxanthin branch of the carotenoid pathway. We previously described a transgenic corn line expressing the early enzymes in the pathway (including lycopene β‐cyclase) and therefore accumulating extraordinary levels of β‐carotene. Here, we demonstrate that introgressing the transgenic mini‐pathway into wild‐type yellow endosperm varieties gives rise to hybrids in which the β : ε ratio is altered additively. Where the β : ε ratio in the genetic background is high, introgression of the mini‐pathway allows zeaxanthin production at an unprecedented 56 μg/g dry weight. This result shows that metabolic synergy between endogenous and heterologous pathways can be used to enhance the levels of nutritionally important metabolites.  相似文献   

20.
The present study was aimed at developing a cell-free preparation of Gaeumannomyces graminis to biosynthesize w2-hydroxy, w3-hydroxy and related metabolites of essential fatty acids. 14C-labelled linoleic acid (18:2(n - 6)), linolenic acid (18:3(n - 3)), arachidonic acid (20:4(n - 6)) and eicosapentaenoic acid (20:5(n - 3)) were incubated with the cytosolic and microsomal fractions and NADPH. Significant metabolism was only found in the cytosol. The main products were purified by high-performance liquid chromatography and identified by gas chromatography-mass spectrometry (GC-MS). 18:2(n - 6) was metabolized mainly to 8-hydroxy-9,12-octadecadienoic acid (8-HODE), while the w2 and the w3 alcohols were formed in relatively small amounts. The absolute configuration of the 8-hydroxyl was found to be R by ozonolysis of the diastereoisomeric (-)-menthoxycarbonyl derivative of 8-HODE and GC-MS analysis. In analogy, 18:3(n - 3) was converted to 8-hydroxy-9,12,15-octadecatrienoic acid and to smaller amounts of the 15,16-diol (15,16-DiHODE). In contrast, 8-hydroxy metabolites of 20:4(n - 6) or 20:5(n - 3) could not be detected. 20:4(n - 6) was efficiently converted to 18(R)-hydroxyeicosatetraenoic acid (18(R)-HETE) and 19(R)-HETE and to traces of 17-HETE, while 20:5(n - 3) was mainly metabolized to the 17,18-diol (17,18-DiHETE) and to smaller amounts of the w2 alcohol. In conclusion, the cytosol of G. graminis can be used for stereoselective biosynthesis of some hydroxy metabolites of essential fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号