首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibiotic resistance is a major public health problem globally. Particularly concerning amongst drug‐resistant human pathogens is Mycobacterium tuberculosis that causes the deadly infectious tuberculosis (TB) disease. Significant issues associated with current treatment options for drug‐resistant TB and the high rate of mortality from the disease makes the development of novel treatment options against this pathogen an urgent need. Antimicrobial peptides are part of innate immunity in all forms of life and could provide a potential solution against drug‐resistant TB. This review is a critical analysis of antimicrobial peptides that are reported to be active against the M tuberculosis complex exclusively. However, activity on non‐TB strains such as Mycobacterium avium and Mycobacterium intracellulare, whenever available, have been included at appropriate sections for these anti‐TB peptides. Natural and synthetic antimicrobial peptides of diverse sequences, along with their chemical structures, are presented, discussed, and correlated to their observed antimycobacterial activities. Critical analyses of the structure allied to the anti‐mycobacterial activity have allowed us to draw important conclusions and ideas for research and development on these promising molecules to realise their full potential. Even though the review is focussed on peptides, we have briefly summarised the structures and potency of the various small molecule drugs that are available and under development, for TB treatment.  相似文献   

2.
The identification of Mycobacterium tuberculosis genes specifically expressed during infection is a key step in understanding mycobacterial pathogenesis. Such genes most likely encode products required for survival within the host and for progressive infection. Recent advances in mycobacterial genetics have permitted the development of new techniques and the adaptation of existing methods to analyse mycobacterial in vivo gene expression and virulence. This has revealed a subset of M. tuberculosis genes that are differentially expressed during infection and has demonstrated that a number of components contribute to the virulence of the organism. This information is expected to provide new strategies to prevent tuberculosis infection, new targets for antimicrobial therapy and new insights into the infectious process.  相似文献   

3.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, manifests discreet strategies to subvert host immune responses, which enable the pathogen to survive and multiply inside the macrophages. This problem is further worsened by the emergence of multidrug resistant mycobacterial strains, which make most of the anti-tuberculous drugs ineffective. It is thus imperative to search for and design better therapeutic strategies, including employment of new antibiotics. Recently, naturally produced antimicrobial molecules such as enzymes, peptides and their synthetic analogs have emerged as compounds with potentially significant therapeutical applications. Although, many antimicrobial peptides have been identified only very few of them have been tested against mycobacteria. A major limitation in using peptides as therapeutics is their sensitivity to enzymatic degradation or inactivity under certain physiological conditions such as relatively high salt concentration. Here, we show that NK-2, a peptide representing the cationic core region of the lymphocytic effector protein NK-lysin, and Ci-MAM-A24, a synthetic salt-tolerant peptide derived from immune cells of Ciona intestinalis, efficiently kill Mycobacterium smegmatis and Mycobacterium bovis-BCG. In addition, NK-2 and Ci-MAM-A24 showed a synergistic killing effect against M. smegmatis, no cytotoxic effect on mouse macrophages at bactericidal concentrations, and were even found to kill mycobacteria residing inside the macrophages. We also show that human placental lysosomal contents exert potent killing effect against mycobacteria under acidic and reducing growth conditions. Electron microscopic studies demonstrate that the lysosomal extract disintegrate bacterial cell membrane resulting in killing of mycobacteria.  相似文献   

4.
The fine‐tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non‐coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host‐directed anti‐mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections.  相似文献   

5.
The potential usefulness of antimicrobial peptides (AMPs) as antimycobacterial compounds has not been extensively explored. Although a myriad of studies on AMPs from different sources have been done, some of its mechanisms of action are still unknown. Maganins are of particular interest since they do not lyse non-dividing mammalian cells. In this work, AMPs with well-recognized activity against bacteria were synthesized, characterized, purified and their antimycobacterial activity and influence on ATPase activity in mycobacterial plasma membrane vesicles were assessed. Using bioinformatics tools, a magainin-I analog peptide (MIAP) with improved antimicrobial activity was designed. The influence of MIAP on proton (H(+)) pumping mediated by F(1)F(0)-ATPase in plasma membrane vesicles obtained from Mycobacterium tuberculosis was evaluated. We observed that the antimycobacterial activity of AMPs was low and variable. However, the activity of the designed peptide MIAP against M. tuberculosis was 2-fold higher in comparison to magainin-I. The basal ATPase activity of mycobacterial plasma membrane vesicles decreased approximately 24-30% in the presence of AMPs. On the other hand, the MIAP peptide completely abolished the F(1)F(0)-ATPase activity involved in H(+) pumping across M. tuberculosis plasma membranes vesicles at levels similar to the specific inhibitor N,N' dicyclohexylcarbodiimide. These finding suggest that AMPs can inhibit the H(+) pumping F(1)F(0)-ATPase of mycobacterial plasma membrane that potentially interferes the internal pH and viability of mycobacteria.  相似文献   

6.
Previously it was shown that the antimicrobial protein granulysin possesses potent membranolytic activity against Mycobacterium tuberculosis. Here we demonstrate that granF2 and G13, which are two short synthetic peptides derived from granulysin, inhibited the in vitro growth of clinical isolates of both multidrug resistant and drug susceptible strains of M. tuberculosis. Importantly, a particularly high activity against multidrug resistant M. tuberculosis correlated with a reduced growth rate compared to drug susceptible strains. A synergistic antibacterial effect of granF2 was further observed in combination with ethambutol, a compound with a documented effect on cell wall permeability. This finding suggests that granF2 and ethambutol exert their functions at different levels of the mycobacterial surface. Upon infection of macrophages in vitro, granF2 but not G13 efficiently reduced the intracellular growth of multidrug resistant M. tuberculosis in the presence of the pore-forming protein streptolysin O. The apoptotic function of granF2 apparently promoted destruction of host cells whereby the peptide gained access to and killed intracellular bacteria. Thus, a cost of resistance and a subsequent reduced fitness, measured as decreased growth among multidrug resistant strains of M. tuberculosis, could be associated with increased susceptibility to natural immune defense mechanisms, such as antimicrobial peptides of granulysin. However, a robust cell wall and the membrane of cells still provide physical shelter for the bacteria that may spare sensitive M. tuberculosis stains from being killed.  相似文献   

7.
张玉娇  李晓静  米凯霞 《遗传》2016,38(10):918-927
结核病是由结核分枝杆菌(Mycobacterium tuberculosis)通过空气传播引起人类感染的慢性传染病,耐药结核分枝杆菌的流行是目前结核病防治的世界难题。氟喹诺酮类药物是人工合成药物,应用于耐药结核的临床治疗中,在治疗中起着核心的作用。但近年来,氟喹诺酮类药物的抗性菌株不断出现,愈发增加了结核病治疗的困难与治疗失败风险。在临床中氟喹诺酮药物的靶点比较清楚,是结核分枝杆菌的DNA旋转酶。目前发现结核分枝杆菌耐氟喹诺酮类药物的机制主要包括药物靶点DNA旋转酶的关键氨基酸改变、药物外排泵系统、细菌细胞壁厚度的增加以及喹诺酮抗性蛋白MfpA介导的DNA旋转酶活性调控。其中在氟喹诺酮靶标DNA旋转酶功能活性改变的耐药机制方面,编码DNA旋转酶基因突变一直是研究的热点,但近年来发现DNA旋转酶的调控蛋白MfpA以及DNA旋转酶的修饰在细菌耐药性中起着重要的作用,相关机制还亟待发现。本文综述了当前结核分枝杆菌耐氟喹诺酮类药物的作用机制,旨在为研发精准诊断技术和药物发掘提供科学理论基础和参考。  相似文献   

8.
Deciphering the structure of pathogen populations is instrumental for the understanding of the epidemiology and history of infectious diseases and for their control. Although Mycobacterium tuberculosis is the most widespread infectious agent in humans, its actual population structure has remained hypothetical until now because: (i) its structural genes are poorly polymorphic; (ii) adequate samples and appropriate statistics for population genetic analysis have not been considered. To investigate this structure, we analysed the statistical associations (linkage disequilibrium) between 12 independent M. tuberculosis minisatellite-like loci by high-throughput genotyping within a model population of 209 isolates representative of the genetic diversity in an area with a very high incidence of tuberculosis. These loci contain variable number tandem repeats (VNTRs) of genetic elements named mycobacterial interspersed repetitive units (MIRUs). Highly significant linkage disequilibrium was detected among the MIRU-VNTR loci in this model. This linkage disequilibrium was also evident when the MIRU-VNTR types were compared with the IS6110 restriction fragment length polymorphism types. These results support a predominant clonal evolution of M. tuberculosis.  相似文献   

9.
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.  相似文献   

10.
The emergence of multidrug- or extremely drug-resistant M. tuberculosis strains has made very few drugs available for current tuberculosis treatment. Antimicrobial peptides can be employed as a promising alternative strategy for TB treatment. Here, we designed and synthesized a series of peptide sequences based on the structure-activity relationships of natural sequences of antimicrobial peptides. The peptide W3R6 and its analogs were screened and found to have potent antimycobacterial activity against M. smegmatis, and no hemolytic activity against human erythrocytes. The evidence from the mechanism of action study indicated that W3R6 and its analogs can interact with the mycobacterial membrane in a lytic manner and form pores on the outer membrane of M. smegmatis. Significant colocalization of D-W3R6 with mycobacterial DNA was observed by confocal laser scanning microscopy and DNA retardation assays, which suggested that the antimycobacterial mechanism of action of the peptide was associated with the unprotected genomic DNA of M. smegmatis. In general, W3R6 and its analogs act on not only the mycobacterial membrane but also the genomic DNA in the cytoplasm, which makes it difficult for mycobacteria to generate resistance due to the peptides having two targets. In addition, the peptides can effectively eliminate M. smegmatis cells from infected macrophages. Our findings indicated that the antimicrobial peptide W3R6 could be a novel lead compound to overcome the threat from drug-resistant M. tuberculosis strains in the development of potent AMPs for TB therapeutic applications.  相似文献   

11.
In the majority of individuals infected with Mycobacterium tuberculosis, the bacilli cause a long-term asymptomatic infection called latent tuberculosis, a state during which the bacilli reside within granulomas. Latently infected individuals have around 10% risk of progression to clinical disease at a later stage. Determining the state of the mycobacteria and the host cells during this latent phase, i.e. within the granulomas, would greatly improve our understanding of the physiopathology of tuberculosis, and thus enable the development of new therapeutic means to treat the one-third of the world's population who are latently infected. We have developed an in vitro model of human mycobacterial granulomas, enabling the cellular and molecular analysis of the very first steps in the host granulomatous response to either mycobacterial compounds or live mycobacterial species. In vitro mycobacterial granulomas mimic natural granulomas very well, with the progressive recruitment of macrophages around live bacilli or mycobacterial antigen-coated beads, their differentiation into multinucleated giant cells and epithelioid cells, and the final recruitment of a ring of activated lymphocytes. Besides morphological similarities, in vitro granulomas also functionally resemble natural ones, with the development of intense cellular co-operation and intracellular mycobactericidal activities.  相似文献   

12.
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.  相似文献   

13.
Antimicrobial peptides: key components of the innate immune system   总被引:1,自引:0,他引:1  
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.  相似文献   

14.
Several human pathogens are to be found within the bacterial genus Mycobacterium, notably Mycobacterium tuberculosis, the causative agent of tuberculosis, one of the most threatening of human infectious diseases, with an annual lethality of about two million people. The characteristic mycobacterial cell envelope is the dominant feature of the biology of M. tuberculosis and other mycobacterial pathogens, based on sugars and lipids of exceptional structure. The cell wall consists of a peptidoglycan-arabinogalactan-mycolic acid complex beyond the plasma membrane. Free-standing lipids, lipoglycans, and proteins intercalate within this complex, complement the mycolic acid monolayer and may also appear in a capsular-like arrangement. The consequences of these structural oddities are an extremely robust and impermeable cell envelope. This review reflects on these entities from the perspective of their synthesis, particularly the structural and functional aspects of the glycosyltransferases (GTs) of M. tuberculosis, the dominating group of enzymes responsible for the terminal stages of their biosynthesis. Besides the many nucleotide-sugar dependent GTs with orthologs in prokaryotes and eukaryotes, M. tuberculosis and related species of the order Actinomycetales, in light of the highly lipophilic environment prevailing within the cell envelope, carry a significant number of GTs of the GT-C class dependent on polyprenyl-phosphate-linked sugars. These are of special emphasis in this review.  相似文献   

15.
The goal of this review is to characterize defensins representing an evolutionary the most ancient family of antimicrobial peptides. It gives general information on functional and structural features of defensins as the main components of the first-line defense of higher eukaryote organisms against infectious agents. The review not only considers current situation in the defensin research but also perspectives of creation of recombinant antimicrobial peptides of biomedical application.  相似文献   

16.
Tuberculosis killed 1.5 million people in 2018. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the most deadly infectious bacteria in the world. A strength of mycobacterial pathogens — their formidable cell wall — could also be one of their greatest molecular vulnerabilities. As in other bacteria, peptidoglycan (PG) maintenance and integrity is essential to mycobacterial survival. But Mtb PG is unique, and a better understanding of its biosynthetic machinery could lead to new drugs or more effective treatment regimens. Such investigations are being accelerated by the application of fluorescent probes, including those based on vancomycin, β-lactams, PG stem mimics, d-amino acids, and reactive glycans. This review will describe how fluorescent probes are being used to uncover new information on the regulation and drug susceptibility of two classes of enzymes that fortify the Mtb PG: the penicillin-binding proteins and the L,D-transpeptidases.  相似文献   

17.
生物膜,也称为生物被膜,是指附着于有生命或无生命物体表面被细菌胞外大分子包裹的有组织的细菌群体。与浮游菌相比,生物膜内的细菌对抗生素的耐受性提高了10–1000倍,是造成目前细菌耐药的主要原因之一。作为一种新型抗菌制剂,抗菌肽的使用为生物膜感染的治疗提供了一种新的思路和手段。抗菌肽在抑制生物膜形成、杀灭生物膜内细菌以及消除成熟生物膜的过程中发挥了独特的优势。文中分析了近30年的数据,从细菌生物膜的结构入手,对抗菌肽可能的抗生物膜机理进行了综述,以期为抗菌肽临床治疗生物膜感染提供一定参考。  相似文献   

18.
蜘蛛抗菌肽研究进展   总被引:2,自引:0,他引:2  
唐兴  陈连水  李江 《生命科学》2014,(10):1090-1095
蜘蛛活性多肽研究主要集中于蜘蛛毒液中作用于离子通道的神经毒素多肽。但近年来,一些蜘蛛抗菌肽不断被分离纯化,其结构和抗菌活性也被广泛深入研究,这将成为蜘蛛活性多肽研究领域的一个新热点。在蜘蛛毒液和血液中,存在不同种类的抗菌肽,其多肽长度、结构、抗菌作用各不相同。而且,有些抗菌肽甚至具有抗肿瘤作用。概述了蜘蛛抗菌肽在结构和功能方面的研究进展。  相似文献   

19.
20.
抗菌肽广泛地存在于自然界中,其中许多抗菌肽具有直接抗微生物活性,能作用于G-、 G+细菌、真菌、寄生虫甚至是包膜病毒,并且在宿主先天免疫和适应性反应中有重要的调节作用。近来,越来越多的证据表明抗菌肽是有效的免疫辅助因子,能够与其他的众多免疫效应子协同作用,从而起始适应性免疫,促进伤口愈合,抑制前炎症反应以及诱导和调节细胞因子和趋化因子的产生。另外,随着抗菌肽作用机理逐渐被揭开,将这些内源性肽及其衍生物制成抗感染治疗药剂将会有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号