首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimations of global fungal diversity are hampered by a limited understanding of the forces that dictate host exclusivity in saprobic microfungi. To consider this problem for Gondwanamyces and Ophiostoma found in the flower heads of Protea in South Africa, we determined the role of various factors thought to influence their host exclusivity. Results showed that various biotic and abiotic factors influence the growth and survival of these fungi in vitro. Monitoring temperature and relative humidity (RH) fluctuations within infructescences in vivo revealed considerable microclimatic differences between different Protea spp. Fungal growth and survival at different RH levels experienced in the field suggested that this factor does not play a major role in host exclusivity of these fungi. Maximum temperatures within infructescences and host preferences of the vectors of Gondwanamyces and Ophiostoma appear to play a substantial part in determining colonisation of Protea in general. However, these factors did not explain host exclusivity of specific fungal species towards particular Protea hosts. In contrast, differential growth of fungal species on media containing macerated tissue of Protea showed that Gondwanamyces and Ophiostoma grow best on tissue from their natural hosts. Thus, host chemistry plays a role in host exclusivity of these fungi, although some species grew vigorously on tissue of Protea spp. with which they are not naturally associated. A combination of host chemistry and temperature partially explains host exclusivity, but the relationship for these factors on the tested saprobic microfungi and their hosts is clearly complex and most likely includes combinations of various biotic and abiotic factors including those emerging from this study.  相似文献   

2.
Entomochoric spore dispersal is well-documented for most ophiostomatoid fungal genera, most of which are associated with bark or ambrosia beetles. Gondwanamyces spp. are unusual members of this group that were first discovered in the flower heads of the primitive angiosperm genus Protea, that is mostly restricted to the Cape Floristic region of Africa. In this study, we present the discovery of the vectors of Gondwanamyces proteae in Protea repens infructescences, which were identified using PCR, direct isolation, and light microscopy. Gondwanamyces proteae DNA and ascospores were identified on diverse lineages of arthropods including beetles (Euderes lineicolis and Genuchus hottentottus), bugs (Oxycarenus maculates), a psocopteran species and five mite (Acari) species. Based on isolation frequency, however, a mite species in the genus Trichouropoda appears to be the most common vector of G. proteae. Gondwanamyces spores were frequently observed within pit mycangia at the base of the legs of these mites. Manipulative experiments demonstrated the ability of mites to carry viable G. proteae spores whilst in transit on the beetle G. hottentottus and that these mites are able to transfer G. proteae spores to uncolonised substrates in vitro. Interestingly, this same mite species has also been implicated as vector of Ophiostoma spores on P. repens and belongs to the same genus of mites that vector Ophiostoma spp. associated with pine-infesting bark beetles in the Northern Hemisphere.  相似文献   

3.
Ophiostoma (Ophiostomatales) represents a large genus of fungi mainly known from associations with bark beetles (Curculionidae: Scolytinae) infesting conifers in the northern hemisphere. Few southern hemisphere native species are known, and the five species that consistently occur in the infructescences of Protea spp. in South Africa are ecologically unusual. Little is known about the vectors of Ophiostoma spp. from Protea infructescences, however recent studies have considered the possible role of insects and mites in the distribution of these exceptional fungi. In this study we describe a new species of Ophiostoma and a new Sporothrix spp. with affinities to Ophiostoma, both initially isolated from mites associated with Protea spp. They are described as Ophiostoma gemellus sp. nov. and Sporothrix variecibatus sp. nov. based on their morphology and comparisons of DNA sequence data of the 28S ribosomal, beta-tubulin and internal transcribed spacer (ITS1, 5.8S, ITS2) regions. DNA sequences of S. variecibatus were identical to those of a Sporothrix isolate obtained from Eucalyptus leaf litter in the same area in which S. variecibatus occurs in Protea infructescences. Results of this study add evidence to the view that mites are the vectors of Ophiostoma spp. that colonize Protea infructescences. They also show that DNA sequence comparisons are likely to reveal additional cryptic species of Ophiostoma in this unusual niche.  相似文献   

4.
Gondwanamyces and its Custingophora anamorphs were first described from Protea infructescences in South Africa. Subsequently these unusual fungi were also found on Cecropia in Central America. During an investigation into the decline and death of native Euphorbia trees in South Africa, several fungal isolates resembling the anamorph state of Gondwanamyces were obtained from diseased tissues. In this study these isolates are identified based on morphology and comparisons of DNA sequences. Two previously unknown Gondwanamyces species were identified, both were associated with damage caused by beetles (Cossonus sp.). Inoculation studies showed that the new species of Gondwanamyces are pathogenic on Euphorbia ingens and may contribute to the decline of these trees.  相似文献   

5.
The floral heads (infructescences) of South African Protea L. represent a most unusual niche for fungi of the economically important genus Ophiostoma Syd. and P. Syd. emend. Z.W. de Beer et al. Current consensus holds that most members of Ophiostoma are vectored by tree-infesting bark beetles. However, it has recently been suggested that mites, phoretic on these bark beetles, may play a central role in the dispersal of Ophiostoma. No bark beetles are known from Protea. Therefore, identifying the vectors of Ophiostoma in Protea infructescences would independently evaluate the role of various arthropods in the dispersal of Ophiostoma. Infructescence-colonizing arthropods were tested for the presence of Ophiostoma DNA using polymerase chain reaction (PCR) and for reproductive propagules by isolation on agar plates. PCR tests revealed that few insects carried Ophiostoma DNA. In contrast, various mites (Proctolaelaps vandenbergi Ryke, two species of Tarsonemus Canestrini and Fonzago, and one Trichouropoda Berlese species) frequently carried Ophiostoma propagules. DNA sequence comparisons for 28S ribosomal DNA confirmed the presence of O. splendens G. J. Marais and M. J. Wingf., O. palmiculminatum Roets et al., and O. phasma Roets et al. on these mites. Two apparently undescribed species of Ophiostoma were also identified. Light and scanning electron microscopy revealed specialized structures in Trichouropoda and one Tarsonemus sp. that frequently contained Ophiostoma spores. The Trichouropoda sp. was able to complete its life cycle on a diet consisting solely of its identified phoretic Ophiostoma spp. This study provides compelling evidence that mites are the primary vectors of infructescence-associated Ophiostoma spp. in South Africa.  相似文献   

6.
We isolated ophiostomatoid fungi from bark beetles infesting Pinus densiflora and their galleries at 24 sites in Japan. Twenty-one ophiostomatoid fungi, including species of Ophiostoma, Grosmannia, Ceratocystiopsis, Leptographium, and Pesotum, were identified. Among these, 11 species were either newly recorded in Japan or were previously undescribed species. Some of these fungal species were isolated from several bark beetles, but other species were isolated from only a particular beetle species. Thus, it is suggested that some ophiostomatoid fungi have specific relationships with particular beetle species. In addition, fungus-beetle biplots from redundancy analysis (RDA) summarizing the effects of beetle ecological characteristics suggested that the association patterns between bark beetles and the associated fungi seemed to be related to the niches occupied by the beetles.  相似文献   

7.
Fungi in the orders Ophiostomatales and Microascales (Ascomycota), often designated as ophiostomatoid fungi, are frequent associates of scolytine bark and ambrosia beetles that colonize hardwood and coniferous trees. Several species, e.g., Ophiostoma novo-ulmi, are economically damaging pathogens of trees. Because little is known regarding the ophiostomatoid fungi in Europe, we have explored the diversity of these fungi associated with hardwood-infesting beetles in Poland. This study aims to clarify the associations between fungi in the genera Ambrosiella, Graphium (Microascales), Graphilbum, Leptographium, Ophiostoma and Sporothrix (Ophiostomatales) and their beetle vectors in hardwood ecosystems. Samples associated with 18 bark and ambrosia beetle species were collected from 11 stands in Poland. Fungi were isolated from adult beetles and galleries. Isolates were identified based on morphology, DNA sequence comparisons for five gene regions (ITS, LSU, ßT, TEF 1-α, and CAL) and phylogenetic analyses. In total, 36 distinct taxa were identified, including 24 known and 12 currently unknown species. Several associations between fungi and bark and ambrosia beetles were recorded for the first time. In addition, associations between Dryocoetes alni, D. villosus, Hylesinus crenatus, Ernoporus tiliae, Pteleobius vittatus and ophiostomatoid fungi were reported for the first time, and Sporothrix eucastanea was reported for the first time outside of the USA. Among the species of Ophiostomatales, 14 species were in Ophiostoma s. l., two species were in Graphilbum, nine species were in Sporothrix, and seven species were in Leptographium s. l. Among the species of Microascales, three species were in Graphium, and one was in Ambrosiella. Twenty taxa were present on the beetles and in the galleries, twelve only on beetles, and four only in galleries. Bark and ambrosia beetles from hardwoods appear to be regular vectors, with ophiostomatoid fungi present in all the beetle species. Most ophiostomatoid species had a distinct level of vector/host specificity, although Ophiostoma quercus, the most frequently encountered species, also had the greatest range of beetle vectors and tree hosts. Plant pathogenic O. novo-ulmi was found mainly in association with elm-infesting bark beetles (Scolytus multistriatus, S. scolytus, and P. vittatus) and occasionally with H. crenatus on Fraxinus excelsior and with Scolytus intricatus on Quercus robur.  相似文献   

8.
The genus Ophiostoma includes numerous species of primarily insect-vectored, wood-staining fungi. Several anamorph genera that differ in their micronematous or macronematous conidiogenous cells have been associated with Ophiostoma species. Among the former group, Sporothrix is associated with many species and is characterized by conidiogenous cells that arise laterally or terminally from any place on the hyphae and produce nonseptate conidia on sympodially developing denticles. The purpose of this study was to characterize ophiostomatoid isolates with Sporothrix anamorphs recently collected in Austria and Azerbaijan. The isolates were characterized based on comparisons of rDNA and β-tubulin sequence data. Morphology, growth in culture, and sexual reproductive mode were also considered. Phylogenetic analyses of the combined sequence data showed that the isolates formed two distinct groups, one including isolates from Austria and the other isolates from Austria and Azerbaijan. Growth at 25 C and morphology revealed some differences between the two groups, and supported the view that they represent two new species, which we describe here as Ophiostoma fusiforme sp. nov. and Ophiostoma lunatum sp. nov. Both these groups phylogenetically were related to, but distinct from, Ophiostoma stenoceras.  相似文献   

9.
Abstract:  The association between Tomicus piniperda L. (Col., Scolytinae) and fungi was studied in a Pinus sylvestris L. forest in Mielec-Mościska. Fungi were isolated from overwintered adult beetles taken from two stands situated in different distance from timber yard. Two media were used for isolation. The results showed great diversity of fungi associated with T. piniperda : 1895 cultures, representing 64 species, were isolated. Penicillia and Hormonema dematioides were the dominant species, found in 20.2% and 17.8% of all beetles, respectively. A frequently isolated ophiostomatoid fungi was Ophiostoma minus . Qualitative and quantitative differences in the mycobiota composition of this insect between two stands were detected. The highest richness and diversity of fungal species appeared in the samples taken from the location where the trees were heavily damaged by shoot-feeding of T. piniperda . Differences were most clear for the pathogenic O. minus , which was a common fungal associate of the insects in this stand.  相似文献   

10.
Many bark beetles live in a symbiosis with ophiostomatoid fungi but very little is known regarding these fungi in Spain. In this study, we considered the fungi associated with nine bark beetle species and one weevil infesting two native tree species (Pinus sylvestris and Pinus nigra) and one non-native (Pinus radiata) in Cantabria (Northern Spain). This included examination of 239 bark beetles or their galleries. Isolations yielded a total of 110 cultures that included 11 fungal species (five species of Leptographium sensu lato including Leptographium absconditum sp. nov., five species of Ophiostoma sensu lato including Ophiostoma cantabriense sp. nov, and one species of Graphilbum). The most commonly encountered fungal associates of the bark beetles were Grosmannia olivacea, Leptographium procerum, and Ophiostoma canum. The aggressiveness of the collected fungal species was evaluated using inoculations on two-year-old P. radiata seedlings. Leptographium wingfieldii, Leptographium guttulatum, and Ophiostoma ips were the only species capable of causing significant lesions.  相似文献   

11.
The ophiostomatoid fungi associated with cerambycid beetles Tetropium spp. (their symbiotic vectors) colonizing Norway spruce in Poland (six species collected) were isolated. The virulence of representative isolates was evaluated through inoculations using 2-year-old Norway spruce seedlings. A total of 1325 isolates (Ophiostoma piceae, O. tetropii, O. minus, Grosmannia piceiperda, G. cucullata, and five other less frequent taxa) were obtained. Tetropium castaneum and T. fuscum were vectors of similar spectra of ophiostomatoid fungi although some differences in fungal frequency between these Tetropium spp. were found. Among the fungal associates of the Tetropium spp. collected only G. piceiperda was pathogenic, which suggests that it can play a role in the death of spruce trees following attack by Tetropium spp.  相似文献   

12.
Ophiostoma quercus (Ascomycota, Ophiostomatales) is a globally widespread, insect-vectored fungus that colonizes a wide diversity of hardwood and conifer hosts. Although the fungus is considered to be non-pathogenic, it is closely related to the fungi that cause Dutch elm disease. We examined the global diversity of O. quercus based on a ribosomal RNA marker and three unlinked gene regions. The fungus exhibited substantial morphological diversity. In addition, O. quercus had high genetic diversity in every continent from which it was collected, although the fungus was most diverse in Eurasia. There was no evidence of geographical clustering of haplotypes based on phylogenetic and network analyses. In addition, the phylogenetic trees generated based on the different markers were non-congruent. These results suggest that O. quercus has been repeatedly moved around the globe, because of trade in wood products, and that the fungal species most likely outcrosses regularly. The high genetic diversity of the fungus, as well as its ability to utilize a wide variety of arthropod vectors and colonize a tremendous diversity of tree host species makes O. quercus truly unique among ophiostomatoid fungi.  相似文献   

13.
Bark beetles (Coleoptera: Scolytinae) are known to be associated with fungi, especially species of Ophiostoma sensu lato and Ceratocystis. However, very little is known about these fungi in Spain. In this study, we examined the fungi associated with 13 bark beetle species and one weevil (Coleoptera: Entiminae) infesting Pinus radiata in the Basque Country of northern Spain. This study included an examination of 1323 bark beetles or their galleries in P. radiata. Isolations yielded a total of 920 cultures, which included 16 species of Ophiostoma sensu lato or their asexual states. These 16 species included 69 associations between fungi and bark beetles and weevils that have not previously been recorded. The most commonly encountered fungal associates of the bark beetles were Ophiostoma ips, Leptographium guttulatum, Ophiostoma stenoceras, and Ophiostoma piceae. In most cases, the niche of colonization had a significant effect on the abundance and composition of colonizing fungi. This confirms that resource overlap between species is reduced by partial spatial segregation. Interaction between niche and time seldom had a significant effect, which suggests that spatial colonization patterns are rarely flexible throughout timber degradation. The differences in common associates among the bark beetle species could be linked to the different niches that these beetles occupy.  相似文献   

14.
Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada. Fungi were isolated from these beetles and identified using a combination of morphology and DNA sequence comparisons of five gene regions. In all four populations, Grosmannia aurea was the most common associate (74–100% of all beetles) followed closely by Ophiostoma abietinum (29–75%). Other fungi isolated, in order of their relative prevalence with individual beetles were an undescribed Leptographium sp. (0–13%), Ophiostoma ips (0–15%), Ophiostoma piliferum (0–11%), a Pesotum sp. (0–11%) and Ophiostoma floccosum (0–1%). Comparisons of the DNA sequences of Leptographium strains isolated in this study, with ex-type isolates of G. aurea, Grosmannia robusta, Leptographium longiclavatum, and Leptographium terebrantis, as well as with sequences from GenBank, revealed a novel lineage within the Grosmannia clavigera complex. This lineage included some of the D. murrayane isolates as well as several isolates from previous studies referred to as L. terebrantis. However, the monophyly of this lineage is not well supported and a more comprehensive study will be needed to resolve its taxonomic status as one or more novel taxa.  相似文献   

15.
The Ophiostomatales (Ascomycota) include mainly insect and mite-associated fungi, the majority of which are found on trees. Very little is known regarding the occurrence or diversity of these fungi in South America. The aim of this study was to consider their occurrence on native Nothofagus trees in the Patagonian Andes of Argentina. Isolates were collected in national parks and provincial reserves in Patagonia between 2009 and 2011. These were grouped based on morphology, and 22 representative isolates were included in phylogenetic analyses based on sequence data of multiple loci (LSU, ITS, beta-tubulin and translation elongation factor-1 alpha genes). The isolates could be assigned to ten different taxa, and included eight species of Ophiostoma s. l., one species of Leptographium, and one species in the Sporothrix lignivora complex. Three of the species are described as new, including Ophiostoma patagonicum, Leptographium gestamen, and Sporothrix cabralii. Ophiostoma quercus and O. noveae-zelandiae are reported for the first time from Argentina, and we show that the latter species is distinct from O. pluriannulatum, in contrast to a previous suggestion that they represent the same taxon.  相似文献   

16.
Restriction fragment length polymorphisms (RFLPs) in the ribosomal RNA gene (rDNA) region were used to assess relationships between the Dutch elm disease fungi Ophiostoma novo-ulmi and Ophiostoma ulmi , the recently described Himalayan Dutch elm disease pathogen, Ophiostoma himal-ulmi , the morphologically similar sapstain fungi, Ophiostoma piceae and Ophiostoma quercus , and several Ophiostoma species from hardwood trees, including Ophiostoma stenoceras and Ophiostoma proliferum . A distance matrix and cluster analysis indicated that the rDNA region of O. himal-ulmi is more closely related to those of O. novo-ulmi and O. ulmi than to those of O. piceae and O. quercus and is more distantly related to O. stenoceras and the other Ophiostoma species, which formed a separate clade. The rDNA region of O. quercus was found to be at least as closely related to that of O. novo-ulmi and O. ulmi as it is to that of O. piceae . The implications of these results for the evolution of the Dutch elm disease fungi are discussed.  相似文献   

17.
The aim of this study was to develop DNA probes that could identify the major fungal species associated with mountain pine beetles (MPB). The beetles are closely associated with fungal species that include ophiostomatoid fungi that can be difficult to differentiate morphologically. The most frequently isolated associates are the pine pathogens Grosmannia clavigera and Leptographium longiclavatum, the less pathogenic Ophiostoma montium, and an undescribed Ceratocystiopsis species (Cop. sp.). Because growing, isolating and extracting DNA from fungi vectored by MPB can be time and labour intensive, we designed three rDNA primer sets that specifically amplify short rDNA amplicons from O. montium, Cop. sp. and the pine Leptographium clade. We also designed two primer sets on a gene of unknown function that can differentiate G. clavigera and L. longiclavatum. We tested the primers on 76 fungal isolates that included MPB associates. The primers reliably identified their targets from DNA obtained from pure fungal cultures, pulverized beetles, beetle galleries, and tree phloem inoculated with G. clavigera. The primers will facilitate large-scale work on the ecology of the MPB-fungal-lodgepole pine ecosystem, as well as phytosanitary/quarantine sample screening.  相似文献   

18.
We investigated the effect of water potential (WP) on the growth of, and interaction between, two ophiostomatoid fungi, Grosmannia clavigera and Ophiostoma montium, associated with the mountain pine beetle (Dendroctonus ponderosae). The WP of malt extract agar was amended by adding potassium chloride (KCl) or sucrose. Growth of both fungi decreased with WP on KCl-amended media. Growth of G. clavigera also decreased with WP on sucrose-amended media, although growth was stimulated on these media compared to unamended treatments. Growth of O. montium remained relatively constant on sucrose-amended media, confounding the effect of WP on this species. Both fungi were able to colonize media occupied by the other species, but at a slower rate than on unoccupied media, indicating competition. In most treatments, G. clavigera grew faster than O. montium and colonized a greater area when the two fungi were inoculated concurrently but distant to one another on a Petri dish. However, when each fungus was inoculated adjacent to a 10-d-old well-established colony of the other species, O. montium colonized occupied media more effectively than G. clavigera considering the growth rate of each species alone. Thus, G. clavigera dominated primary (uncolonized) resources on most media, whereas O. montium was more effective in colonizing secondary (occupied) resources. The differential response of the two fungi to sucrose indicates that they may use different carbon sources, or use different carbon sources at different rates, in the tree. Fine-scale resource partitioning, differences in primary and secondary resource capture abilities, and the non-equilibrium dynamics in an attacked tree over time, could all act to promote the co-existence of two unit-restricted dispersers on a discontinuous resource.  相似文献   

19.
Knoxdaviesia proteae is one of the first native ophiostomatoid fungi discovered in South Africa, where it consistently occurs in the infructescences of the iconic Cape Biome plant, Protea repens. Although numerous studies have been undertaken to better understand the ecology of K. proteae, many questions remain to be answered, particularly given its unique niche and association with arthropods for dispersal. We describe the development and distribution of microsatellite markers in K. proteae through Interspersed Simple Sequence Repeat-Polymerase Chain Reaction (ISSR-PCR) enrichment and pyrosequencing. A large proportion of the 31492 sequences obtained from sequencing the enriched genomic DNA were characterised by microsatellites consisting of short tandem repeats and di- and tri-nucleotide motifs. Seventeen percent of these microsatellites contained flanking regions sufficient for primer design. Twenty-three primer pairs were tested, of which 12 amplified and 10 generated polymorphic fragments in K. proteae. Half of these could be transferred to the sister species, K. capensis. The developed markers will be used to investigate the reproductive system, genetic diversity and dispersal strategies of K. proteae.  相似文献   

20.
The mountain pine beetle (MPB) is a native bark beetle of western North America that attacks pine tree species, particularly lodgepole pine. It is closely associated with the ophiostomatoid ascomycetes Grosmannia clavigera, Leptographium longiclavatum, Ophiostoma montium, and Ceratocystiopsis sp.1, with which it is symbiotically associated. To develop a better understanding of interactions between beetles, fungi, and host trees, we used target-specific DNA primers with qPCR to assess the changes in fungal associate abundance over the stages of the MPB life cycle that occur in galleries under the bark of pine trees. Multivariate analysis of covariance identified statistically significant changes in the relative abundance of the fungi over the life cycle of the MPB. Univariate analysis of covariance identified a statistically significant increase in the abundance of Ceratocystiopsis sp.1 through the beetle life cycle, and pair-wise analysis showed that this increase occurs after the larval stage. In contrast, the abundance of O. montium and Leptographium species (G. clavigera, L. longiclavatum) did not change significantly through the MPB life cycle. From these results, the only fungus showing a significant increase in relative abundance has not been formally described and has been largely ignored by other MPB studies. Although our results were from only one site, in previous studies we have shown that the fungi described were all present in at least ten sites in British Columbia. We suggest that the role of Ceratocystiopsis sp.1 in the MPB system should be explored, particularly its potential as a source of nutrients for teneral adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号