首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new computer-aided molecular modeling approach based on the concept of three-dimensional (3D) molecular hydrophobicity potential has been developed to calculate the spatial organization of intramembrane domains in proteins. The method has been tested by calculating the arrangement of membrane-spanning segments in the photoreaction center ofRhodopseudomonas viridis and comparing the results obtained with those derived from the X-ray data. We have applied this computational procedure to the analysis of interhelical packing in membrane moiety of Na+, K+-ATPase. The work consists of three parts. In Part I, 3D distributions of electrostatic and molecular hydrophobicity potentials on the surfaces of transmembrane helical peptides were computed and visualized. The hydrophobic and electrostatic properties of helices are discussed from the point of view of their possible arrangement within the protein molecule. Interlocation of helical segments connected with short extramembrane loops found by means of optimization of their hydrophobic/hydrophilic contacts is considered in Part II. The most probable 3D model of packing of helical peptides in the membrane domain of Na+, K+-ATPase is discussed in the final part of the work.  相似文献   

2.
A new computer-aided molecular modeling approach based on the concept of three-dimensional (3D) molecular hydrophobicity potential has been developed to calculate the spatial organization of intramembrane domains in proteins. The method has been tested by calculating the arrangement of membrane-spanning segments in the photoreaction center ofRhodopseudomonas viridis and comparing the results obtained with those derived from the X-ray data. We have applied this computational procedure to the analysis of interhelical packing in membrane moiety of Na+, K+-ATPase. The work consists of three parts. In Part I, 3D distributions of electrostatic and molecular hydrophobicity potentials on the surfaces of transmembrane helical peptides were computed and visualized. The hydrophobic and electrostatic properties of helices are discussed from the point of view of their possible arrangement within the protein molecule. Interlocation of helical segments connected with short extramembrane loops found by means of optimization of their hydrophobic/hydrophilic contacts is considered in Part II. The most probable 3D model of packing of helical peptides in the membrane domain of Na+, K+-ATPase is discussed in the final part of the work.  相似文献   

3.
The Transmembrane Helices of Beef Heart Cytochrome Oxidase   总被引:1,自引:0,他引:1       下载免费PDF全文
The locations of the transmembrane helices in the 12 subunits of beef heart cytochrome oxidase were predicted with a modified form of the von Heijne-Blomberg hydrophobicity scale. Based on ~20 residues per transmembrane helix, about 480 of the estimated 660 helical residues (36.8% of 1,793 total residues) are expected to be in transmembrane helices that have their axes tilted by a small angle α from the normal to the plane of the membrane. This angle is calculated to be ~30°, based on the observed overall tilt angle θ of 39° obtained from circular dichroism (CD) measurements on multilamellar films, or about 25°, based on the observed tilt angle θ of 36° obtained from the infrared linear dichroism of films. For 21 residues per transmembrane helix, the calculated values of α become 32° and 28°, respectively, depending upon the value of θ used. Thus, a transmembrane helical tilt angle of ~30° accounts for the predicted transmembrane stretches in cytochrome oxidase if 20-21 residues are sufficient to span the membrane. Additional helical residues in the lipid head region may deviate by a larger angle from the normal to the plane of the membrane in cytochrome oxidase.  相似文献   

4.
The x-ray structure of NccX, a type II transmembrane metal sensor, from Cupriavidus metallidurans 31A has been determined at a resolution of 3.12 Å. This was achieved after solubilization by dodecylphosphocholine and purification in the presence of the detergent. NccX crystal structure did not match the model based on the extensively characterized periplasmic domain of its closest homologue CnrX. Instead, the periplasmic domains of NccX appeared collapsed against the hydrophobic transmembrane segments, leading to an aberrant topology incompatible with membrane insertion. This was explained by a detergent-induced redistribution of the hydrophobic interactions among the transmembrane helices and a pair of hydrophobic patches keeping the periplasmic domains together in the native dimer. Molecular dynamics simulations performed with the full-length protein or with the transmembrane segments were used along with in vivo homodimerization assays (TOXCAT) to evaluate the determinants of the interactions between NccX protomers. Taken as a whole, computational and experimental results are in agreement with the structural model of CnrX where a cradle-shaped periplasmic metal sensor domain is anchored into the inner membrane by two N-terminal helices. In addition, they show that the main determinant of NccX dimerization is the periplasmic soluble domain and that the interaction between transmembrane segments is highly dynamic. The present work introduces a new crystal structure for a transmembrane protein and, in line with previous studies, substantiates the use of complementary theoretical and in vivo investigations to rationalize a three-dimensional structure obtained in non-native conditions.  相似文献   

5.
The transmembrane domain of chemoreceptor Trg from Escherichia coli contains four transmembrane segments in its native homodimer, two from each subunit. We had previously used mutational analysis and sulfhydryl cross-linking between introduced cysteines to obtain data relevant to the three-dimensional organization of this domain. In the current study we used Fourier analysis to assess these data quantitatively for periodicity along the sequences of the segments. The analyses provided a strong indication of alpha-helical periodicity in the first transmembrane segment and a substantial indication of that periodicity for the second segment. On this basis, we considered both segments as idealized alpha-helices and proceeded to model the transmembrane domain as a unit of four helices. For this modeling, we calculated helical crosslinking moments, parameters analogous to helical hydrophobic moments, as a quantitative way of condensing and utilizing a large body of crosslinking data. Crosslinking moments were used to define the relative separation and orientation of helical pairs, thus creating a quantitatively derived model for the transmembrane domain of Trg. Utilization of Fourier transforms to provide a quantitative indication of periodicity in data from analyses of transmembrane segments, in combination with helical crosslinking moments to position helical pairs should be useful in modeling other transmembrane domains.  相似文献   

6.
Transmembrane proteins make up at least one-fifth of the genome of most organisms and are critical components of key pathways for cell survival and interactions with the environment. The function of helices found at the membrane surface in transmembrane proteins has not been greatly explored, but it is likely that they play an ancillary role to membrane spanning helices and are analogous to the surface active helices of peripheral membrane proteins, being involved in: lipid association, membrane perturbation, transmembrane signal transduction and regulation, and transmembrane helical bundle formation. Due to the difficulties in obtaining high-resolution structural data for this class of proteins, structure-from-sequence predictive methods continue to be developed as a means to obtain structural models for these largely intractable systems. A simple but effective variant of the hydrophobic moment analysis of amino acid sequences is described here as part of a protocol for distinguishing helical sequences that are parallel to or 'horizontal' at the membrane bilayer/aqueous phase interface from helices that are membrane-embedded or located in extra-membranous domains. This protocol when tested on transmembrane spanning protein amino acid sequences not used in its development, was found to be 84-91% accurate when the results were compared to the partition locations in the corresponding structures determined by X-ray crystallography, and 72% accurate in determining which helices lie horizontal or near horizontal at the lipid interface.  相似文献   

7.
Revertants of nonfunctional cytochrome b mutants were isolated and characterized to determine how specific deleterious mutations in cytochrome b can be suppressed by secondary mutations not restoring a wild type protein. It was recently shown that the cytochrome b function can be recovered following various pseudo-wild type reversions at the level of the original site mutation or adjacent positions (di Rago, J.-P., Netter, P., and Slonimski, P. P. (1990) J. Biol. Chem. 265, 3332-3339). In the present study, we describe how the cytochrome b function can be recovered by secondary mutations in positions which are removed from the original mutation by up to more than 100 amino acids. Such revertant mutants are useful for the study of the three-dimensional structure of cytochrome b. The results of the analysis of four deficient mutations which affect a short region of the protein (positions 131-138 of the polypeptide chain) lead us to propose a possible mode of interactive combination between the first five putative transmembrane segments of cytochrome b within the membrane.  相似文献   

8.
Several types of lipid-associating helices exist: transmembrane helices such as in receptor proteins, pore-forming helices in ion channel proteins, fusion-inducing peptides in viral proteins, and amphipathic helices such as in plasma apolipoproteins. In order to propose a classification of these helices according to their molecular properties, we introduce the concept of molecular hydrophobicity potential for such helical segments. The calculation of this parameter for alpha-helices enables the visualization of the hydrophobic and hydrophilic envelopes around the peptide and their three-dimensional representation by molecular graphics. We have used this parameter to differentiate between pore-forming helices with a hydrophobic envelope larger than the hydrophilic component, membrane-spanning helices surrounded almost entirely by an hydrophobic envelope, fusiogenic peptides with an hydrophobicity gradient both around the helix and along the axis, and finally, amphipathic helices with a predominantly hydrophilic envelope. The structure of the lipid-protein complexes is determined by a number of different interactions: the hydrophobic interaction of the apolar faces of the helices with lipids, the polar interaction of the hydrophilic sides of different helices with each other, and the interaction of hydrophilic residues with the aqueous solvent. The relative magnitude of the hydrophobic and hydrophilic envelopes accounts for the differences in the structure of the lipid-protein complexes. Purely hydrophobic interactions stabilize transmembrane helical segments, while hydrophobic interactions with the lipid phase and with each other are involved in the stabilization of the pore-forming helices. In contrast, both hydrophobic interactions with the lipids and hydrophilic interactions with the aqueous phase contribute to the arrangement of amphipathic helices around the edges of the discoidal lipid-apoprotein complexes.  相似文献   

9.
A new method is elaborated for determining the hydropathy profile of membrane haemoproteins. The method is called membrane propensity for haemoproteins (MPH) and is based on the statistical analysis of the amino acid composition of the predicted transmembrane regions of cytochrome b from the bc1 and the b6f complexes. The accuracy of the MPH method in predicting the ends of the known transmembrane segments of the reaction center of Rhodopseudomonas viridis is higher than that obtained by hydropathy methods based on physico-chemical parameters. The MPH method is able to clearly exclude from the membrane polypeptides that are not consistently predicted to be transmembrane by other methods or techniques, for instance the region corresponding to helix IV of mitochondrial cytochrome b. A correlation has been found between the shape of the hydropathy profile of the transmembrane segments predicted by this new method and the known structure of the membrane-spanning helices of Rhodobacter reaction centers. From the above correlation it is proposed that the haem-coordinating domain of mitochondrial cytochrome b is folded in a novel structure, called "clepsydra domain", which is formed by distorted transmembrane helices packed in a waisted antiparallel bundle.  相似文献   

10.
Phospholamban is a 52 amino acid calcium regulatory protein found as pentamers in cardiac SR membranes. The pentamers form through interactions between its transmembrane domains, and are stable in SDS. We have employed a saturation mutagenesis approach to study the detailed interactions between the transmembrane segments, using a chimeric protein construct in which staphylococcal nuclease (a monomeric soluble protein) is fused to the N-terminus of phospholamban. The chimera forms pentamers observable in SDS-PAGE, allowing the effects of mutations upon the oligomeric association to be determined by electrophoresis. The disruptive effects of amino acid substitutions in the transmembrane domain were classified as sensitive, moderately sensitive or insensitive. Residues of the same class lined up on faces of a 3.5 amino acids/turn helical projection, allowing the construction of a model of the interacting surfaces in which the helices are associated in a left-handed pentameric coiled-coil configuration. Molecular modeling simulations (to be described elsewhere in detail) confirm that the helices readily form a left-handed coiled-coil helical bundle and have yielded molecular models for the interacting surfaces, the best of which is identical to that predicted by the mutagenesis. Residues lining the pore show considerable structural sensitivity to mutation, indicating that care must be taken in interpreting the results of mutagenesis studies of channels. The cylindrical ion pore (minimal diameter of 2 A) appears to be defined largely by hydrophobic residues (I40, L43 and I47) with only two mildly polar elements contributed by sulfurs in residues C36 and M50.  相似文献   

11.
"Helical wheel" projections of transmembrane helical segments of membrane proteins involved in proton translocation were constructed. The particular proteins studied were the uncF protein subunit of the Escherichia coli proton-ATPase, the uncE protein subunit of the E. coli proton-ATPase, and cytochrome oxidase subunit III. Clear demarcation of polar and nonpolar regions on surfaces of transmembrane helical segments was seen in the uncF protein and in uncE protein helical segment two, but not in uncE protein helical segment one. The transmembrane segment of cytochrome oxidase subunit III which includes the dicyclohexylcarbodiimide (DCCD)-reactive residue was very similar to E. coli uncE protein helical segment two. The DCCD-reactive residue in both was clearly located on a nonpolar surface.  相似文献   

12.
Two major types of helical structures have been identified in lipid-associating proteins, being either amphipathic or transmembrane domains. A conformational analysis was carried out to characterize some of the properties of these helices. These calculations were performed both on isolated helices and in a lipid environment. According to the results of this analysis, the orientation of the line joining the hydrophobic and hydrophilic centers of the helix seems to determine the orientation of the helix at the lipid/water interface. The calculation of this parameter should be useful to discriminate between an amphipathic helix, parallel to the interface and a transmembrane helix orientated perpendicularly. The membrane-spanning helices are completely immersed in the phospholipid bilayer and their length corresponds to about the thickness of the hydrophobic core of the DPPC bilayer. The energy of interaction, expressed per phospholipid is significantly higher for the transmembrane compared to the amphipathic helices. For the membrane-spanning helices the mean energy of interaction is higher than the interaction energy between two phospholipids, while it is lower for most amphipathic helices. This might account for the stability of these protein-anchoring domains. This computer modeling approach should usefully complement the statistical analysis carried out on these helices, based on their hydrophobicity and hydrophobic moment. It represents a more refined analysis of the domains identified by the prediction techniques and stress the functional character of lipid-associating domains in membrane proteins as well as in soluble plasma lipoproteins.  相似文献   

13.
The prediction of a protein's structure from its amino acid sequence has been a long-standing goal of molecular biology. In this work, a new set of conformational parameters for membrane spanning alpha helices was developed using the information from the topology of 70 membrane proteins. Based on these conformational parameters, a simple algorithm has been formulated to predict the transmembrane alpha helices in membrane proteins. A FORTRAN program has been developed which takes the amino acid sequence as input and gives the predicted transmembrane alpha-helices as output. The present method correctly identifies 295 transmembrane helical segments in 70 membrane proteins with only two overpredictions. Furthermore, this method predicts all 45 transmembrane helices in the photosynthetic reaction center, bacteriorhodopsin and cytochrome c oxidase to an 86% level of accuracy and so is better than all other methods published to date.  相似文献   

14.
δ-Helices are marginally hydrophobic α-helical segments in soluble proteins that exhibit certain sequence characteristics of transmembrane (TM) helices [Cunningham, F., Rath, A., Johnson, R. M. & Deber, C. M. (2009). Distinctions between hydrophobic helices in globular proteins and TM segments as factors in protein sorting. J. Biol. Chem., 284, 5395-402]. In order to better understand the difference between δ-helices and TM helices, we have studied the insertion of five TM-like δ-helices into dog pancreas microsomal membranes. Using model constructs in which an isolated δ-helix is engineered into a bona fide membrane protein, we find that, for two δ-helices originating from secreted proteins, at least three single-nucleotide mutations are necessary to obtain efficient membrane insertion, whereas one mutation is sufficient in a δ-helix from the cytosolic protein P450BM-3. We further find that only when the entire upstream region of the mutated δ-helix in the intact cytochrome P450BM-3 is deleted does a small fraction of the truncated protein insert into microsomes. Our results suggest that upstream portions of the polypeptide, as well as embedded charged residues, protect δ-helices in globular proteins from being recognized by the signal recognition particle-Sec61 endoplasmic-reticulum-targeting machinery and that δ-helices in secreted proteins are mutationally more distant from TM helices than δ-helices in cytosolic proteins.  相似文献   

15.
Recent work has shown that efficient di- or trimerization of hydrophobic transmembrane helices in detergent micelles or lipid bilayers can be driven by inter-helix hydrogen bonding involving polar residues such as Asn or Asp. Using in vitro translation in the presence of rough microsomes of a model integral membrane protein, we now show that the formation of so-called helical hairpins, two tightly spaced transmembrane helices connected by a short loop, can likewise be promoted by the introduction of Asn-Asn or Asp-Asp pairs in a long transmembrane hydrophobic segment. These observations suggest that inter-helix hydrogen bonds can form within the context of the Sec61 translocon in the endoplasmic reticulum, implying that hydrophobic segments in a nascent polypeptide chain in transit through the Sec61 channel have immediate access to a non-aqueous subcompartment within the translocon.  相似文献   

16.
α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (N(cyt)-C(lum) or N(lum)-C(cyt)) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the "missing hydrophobicity" in polytopic membrane proteins.  相似文献   

17.
A critical evaluation of the hydropathy profile of membrane proteins   总被引:6,自引:0,他引:6  
New membrane-preference scales are introduced for categories of membrane proteins with different functions. A statistical analysis is carried out with several scales to verify the relative accuracy in the prediction of the transmembrane segments of polytopic membrane proteins. The correlation between some of the scales most used and those calculated here provides criteria for selecting the most appropriate methods for a given type of protein. The parameters used in the evaluation of the hydropathy profiles have been carefully ascertained in order to develop a reliable methodology for hydropathy analysis. Finally, an integrated hydropathy analysis using different methods has been applied to several sequences of related proteins. The above analysis indicates that (a) microsomal cytochrome P450 contains only one hydrophobic region at the N-terminus that is consistently predicted to transverse the membrane: (b) only four of the six or seven putative transmembrane helices of cytochrome oxidase subunit III are predicted and correspond to helices I, III, V and VI of the previous nomenclature; (c) the product of the mitochondrial ATPase-6 gene (or the chloroplast ATPase-IV gene) of F0-F1-ATPase shows that helix IV is not consistently predicted to traverse the membrane, suggesting a four-helix model for this family of proteins.  相似文献   

18.
The human adenosine A(2A) receptor (A(2A)R) is an integral membrane protein and a member of the G-protein-coupled receptor (GPCR) superfamily, characterized by seven transmembrane (TM) helices. Although helix-helix association in the lipid bilayer is known to be an essential step in the folding of GPCRs, the determinants of their structures, folding, and assembly in the cell membrane are poorly understood. Previous studies in our group showed that while peptides corresponding to all seven TM domains of A(2A)R form stable helical structures in detergent micelles and lipid vesicles, they display significant variability in their helical propensity. This finding suggested to us that some TM domains might need to interact with other domains to properly insert and fold in hydrophobic environments. In this study, we assessed the ability of TM peptides to interact in pairwise combinations. We analyzed peptide interactions in hydrophobic milieus using circular dichroism spectroscopy and F?rster resonance energy transfer. We find that specific interactions between TM helices occur, leading to additional helical content, especially in weakly helical TM domains, suggesting that some TM domains need a partner for proper folding in the membrane. The approach developed in this study will enable complete analysis of the TM domain interactions and the modeling of a folding pathway for A(2A)R.  相似文献   

19.
The packing of helices spanning lipid bilayers is crucial for the stability and function of alpha-helical membrane proteins. Using a modified Voronoi procedure, we calculated packing densities for helix-helix contacts in membrane spanning domains. Our results show that the transmembrane helices of protein channels and transporters are significantly more loosely packed compared with helices in globular proteins. The observed packing deficiencies of these membrane proteins are also reflected by a higher amount of cavities at functionally important sites. The cavities positioned along the gated pores of membrane channels and transporters are noticeably lined by polar amino acids that should be exposed to the aqueous medium when the protein is in the open state. In contrast, nonpolar amino acids surround the cavities in those protein regions where large rearrangements are supposed to take place, as near the hinge regions of transporters or at restriction sites of protein channels. We presume that the observed deficiencies of helix-helix packing are essential for the helical mobility that sustains the function of many membrane protein channels and transporters.  相似文献   

20.
A computational procedure for predicting the arrangement of an isolated helical fragment across a membrane was developed. The procedure places the transmembrane helical segment into a model triple-phase system 'water-octanol-water'; pulls the segment through the membrane, varying its 'global' position as a rigid body; optimizes the intrahelical and solvation energies in each global position by 'local' coordinates (dihedral angles of side chains); and selects the lowest energy global position for the segment. The procedure was applied to 45 transmembrane helices from the photosynthetic reaction center from Rhodopseudomonas viridis, cytochrome c oxidase from Paracoccus denitrificans and bacteriorhodopsin. In two thirds of the helical fragments considered, the procedure has predicted the vertical shifts of the fragments across the membrane with an accuracy of -0.15 +/- 3.12 residues compared with the experimental data. The accuracy for the remaining 15 fragments was 2.17 +/- 3.07 residues, which is about half of a helix turn. The procedure predicts the actual membrane boundaries of transmembrane helical fragments with greater accuracy than existing statistical methods. At the same time, the procedure overestimates the tilt values for the helical fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号