首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Lipoprotein synthesis by the colonic adenocarcinoma cell line Caco-2 was investigated to assess the utility of this cell line as a model for the in vitro study of human intestinal lipid metabolism. Electron micrographic analysis of conditioned medium revealed that under basal conditions of culture post-confluent Caco-2 cells synthesize and secrete lipoprotein particles. Lipoproteins of density (d) less than 1.063 g/ml consist of a heterogeneous population of particles (diameter from 10 to 90 nm). This fraction consists of very low density lipoproteins (d less than 1.006 g/ml) and low density lipoproteins (d = 1.019-1.063 g/ml). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [35S]methionine-labeled Caco-2 lipoproteins revealed that very low density lipoproteins contain apolipoprotein E (apoE) and C apolipoproteins, while low density lipoproteins contained apoB-100, apoE, apoA-I, and C apolipoproteins. The 1.063-1.21 g/ml density fraction contained two morphological entities, discoidal (diameter 15.6 +/- 3.9 nm) and round high density lipoprotein particles (diameter 10.2 +/- 2.3 nm). The high density lipoproteins contained apoA-I, apoB-100, apoB-48, apoE, and the C apolipoproteins. Using isoelectric focusing polyacrylamide gel electrophoresis newly secreted apoA-I was identified as pro-apoA-I. ApoE and apoC-III released by Caco-2 cells were highly sialylated. mRNA species for apoA-I, apoC-III, and apoE, but not apoA-IV were identified by Northern blot analysis. ApoA-I, apoB, and apoE were visualized in Caco-2 cells by immunolocalization analysis. This intestinal cell line may be useful for in vitro studies of nutritional and hormonal regulation of lipoprotein synthesis.  相似文献   

2.
The assembly of very low density lipoproteins (VLDL) by hepatocytes is believed to occur via a two-step process. The first step is the formation of a dense phospholipid and protein-rich particle that is believed to be converted to VLDL by the addition of bulk triglyceride in a second step. Previous studies in our laboratory led us to hypothesize a third assembly step that occurs in route to or in the Golgi apparatus. To investigate this hypothesis, nascent lipoproteins were recovered from Golgi apparatus-rich fractions isolated from mouse liver. The Golgi fractions were enriched 125-fold in galactosyltransferase and contained lipoprotein particles averaging approximately 35 nm in diameter. These lipoproteins were separated by ultracentrifugation into two fractions: d < 1.006 g/ml and d1.006;-1.210 g/ml. The d < 1.006 g/ml fraction contained apolipoprotein B-100 (apoB-100), apoB-48, and apoE, while the d1.006;-1.210 g/ml fraction contained these three apoproteins as well as apoA-I and apoA-IV. Both fractions contained a 21-kDa protein that was isolated and sequenced and identified as major urinary protein. Approximately 50% of the apoB was recovered with the denser fraction. To determine if these small, dense lipoproteins were secreted without further addition of lipid, mice were injected with Triton WR1339 and [(3)H]leucine, and the secretion of apoB-100 and apoB-48 into serum VLDL (d < 1.006 g/ml) and d1.006;-1.210 g/ml fractions was monitored over a 2-h period. More than 80% of the newly synthesized apoB-48 and nearly 100% of the apoB-100 were secreted with VLDL. These studies provide the first characterization of nascent lipoproteins recovered from the Golgi apparatus of mouse liver. We conclude that these nascent hepatic Golgi lipoproteins represent a heterogeneous population of particles including VLDL as well as a population of small, dense lipoproteins. The finding of the latter particles, coupled with the demonstration that the primary secretory product of mouse liver is VLDL, suggests that lipid may be added to nascent lipoproteins within the Golgi apparatus.  相似文献   

3.
We have examined the capability of a previously developed compartmental model to explain the kinetics of radioiodinated apolipoprotein (apo) B-100 in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL) separated by density gradient ultracentrifugation after intravenous injection of radioiodinated VLDL into New Zealand white (NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Our model was developed primarily from kinetics in whole blood plasma of apoB-100 in particles with and without apoE after intravenous injection of large VLDL, total VLDL, IDL, and LDL. When the initial conditions for this model were assumed to be an intravenous injection of radiolabeled VLDL, the plasma VLDL and LDL simulations for NZW rabbits and the VLDL, IDL, and LDL simulations for WHHL rabbits were found to be inconsistent with the observed density gradient data. By adding a new pathway in the VLDL portion of the model for NZW rabbits and a new compartment in VLDL for WHHL rabbits, and by assuming some cross-contamination in the density gradient ultracentrifugal separations, it was possible to bring our model, which was based upon measurements of 125I-labeled apoB-100 in whole plasma, into conformity with the data obtained by density gradient ultracentrifugation. The relatively modest changes required in the model to fit the gradient ultracentrifugation data support the suitability of our approach to the kinetic analysis of the metabolism of apoB-100 in VLDL and its conversion to IDL and LDL based upon measurements of 125I-labeled apoB-100 in whole plasma after injection of radiolabeled VLDL, IDL, and LDL. Furthermore, the differences in kinetics observed by us between data from whole plasma and data from plasma submitted to ultracentrifugal separation from the same or similar animals highlight the fact that small variations that can occur in the separation of lipoprotein classes by buoyant density can lead to confusing results.  相似文献   

4.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

5.
The distribution of apolipoproteins (apo) A-I, A-IV, and E in sera of fed and fasted rats was studied using various methods for the isolation of lipoproteins. Serum concentrations of apoA-I and apoA-IV decreased significantly during fasting (16 and 31%, respectively), while apoE concentrations remained essentially the same. Chromatography of sera on 6% agarose columns showed that apoA-IV is present on HDL and as so-called "free" apoA-IV. The concentration of "free" apoA-IV decreased six- to seven-fold during fasting, explaining the decrease in total serum apoA-IV. Serum apoA-I and apoE are almost exclusively associated with HDL-sized particles. When sera are centrifuged at a density of 1.21 g/ml, marked quantities of apoA-I (8-9%) and apoE (11-22%) are recovered in the "lipoprotein-deficient" infranatant, suggesting that ultracentrifugation affects the integrity of serum HDL. The nature of the chromatographically separated carriers of serum apoA-IV was investigated by quantitative immunoprecipitation. From these studies, it is concluded that apoA-IV in rat serum is present in at least three fractions: 1) particles with the size and composition of HDL, containing both apoA-I and apoA-IV and possibly minor quantities of apoE; 2) HDL-sized particles containing apoA-IV, but no apoA-I or apoE; 3) "free" apoA-IV probably containing small amounts of bound cholesterol and phospholipid.  相似文献   

6.
A monoclonal antibody to apolipoprotein (apo) B-100 (JI-H) with unique binding properties has been used to separate a population of triglyceride-rich lipoproteins from blood plasma of normotriglyceridemic individuals and patients with various forms of hypertriglyceridemia. This antibody fails to recognize an apoE-rich population of very low density lipoproteins (VLDL) containing apoB-100 as well as all triglyceride-rich lipoproteins containing apoB-48, but it binds other VLDL that contain apoE and almost all lipoproteins that contain apoB-100, but no apoE. The unbound triglyceride-rich lipoproteins separated by ultracentrifugation after separation from plasma by immunoaffinity chromatography contained 10-13% of the apoB of triglyceride-rich lipoproteins from three normotriglyceridemic individuals, 10-29% of that from five patients with endogenous hypertriglyceridemia, 40-48% of that from three patients with familial dysbetablipoproteinemia, and 65% of that from a patient with lipoprotein lipase deficiency. In all cases, the unbound triglyceride-rich lipoproteins contained more molecules of apoE and cholesteryl esters per particle than those that were bound to monoclonal antibody JI-H, and they were generally depleted of C apolipoproteins. These properties resemble those described for partially catabolized remnants of chylomicrons and VLDL. The affinity of the unbound lipoproteins for the low density lipoprotein (LDL) receptor varied widely, and closely resembled that of the total triglyceride-rich lipoproteins from individual subjects. Our results demonstrate that remnant-like chylomicrons and a population of remnant-like VLDL can be isolated and quantified in blood plasma obtained in the postabsorptive state from normotriglyceridemic and hypertriglyceridemic individuals alike.  相似文献   

7.
Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both 14C-labeled lipids and 35S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with [14C]oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with [35S]methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the [35S]methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the [14C]oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB. Secretion of lipoproteins was dependent on the lipid content of the medium; prior incubation with lipoprotein-depleted serum specifically reduced the secretion of lipoproteins, while addition of both LDL and oleic acid to the medium maintained the level of apoB-100, B-48, and A-IV secretion to that observed in the control cultures.  相似文献   

8.
Gemfibrozil (Lopid) is a new plasma lipid-regulating drug that decreases very low and low density lipoprotein (VLD/LDL) and increases high density lipoprotein (HDL) concentrations in man. The present experiments tested the effects of gemfibrozil on plasma lipoproteins and apolipoproteins in rats fed high fat/high cholesterol diets. Compared to chow-fed rats, cholesterol feeding for 2 weeks (20% olive oil/2% cholesterol) produced the expected increases in VLDL and intermediate density lipoprotein (IDL) while lowering plasma HDL. This was documented by using three methods of lipoprotein isolation: sequential ultracentrifugation, density gradient ultracentrifugation, and agarose gel filtration. Gemfibrozil gavaged at 50 mg/kg per day for 2 weeks during cholesterol feeding prevented these changes such that lipoprotein patterns were similar to those in chow-fed animals. Whole plasma apoE and apoA-I concentrations were decreased and apoB increased due to cholesterol feeding as determined by electroimmunoassay, but again gemfibrozil treatment prevented these diet-induced alterations. Gradient polyacrylamide gel electrophoresis patterns of the total d less than 1.21 g/ml lipoprotein fractions reflected the changes in apolipoprotein concentrations and further demonstrated a greater increase of apoBl compared to apoBh in cholesterol-fed rats. Gemfibrozil lowered the concentration of both apoB variants and prevented the shift of apoE from HDL to lower density lipoproteins. Changes in the distribution of apoE were confirmed using agarose gel column chromatography followed by electroimmunoassay. These methods also revealed a shift of apoA-IV from HDL to the d greater than 1.21 g/ml, lipoprotein-free fraction with gemfibrozil treatment when blood was taken from fasted or postabsorptive animals. Since it was also noted that in chow-fed rats more apoA-IV was present in the d greater than 1.21 g/ml fraction in the postabsorptive or fed state compared to fasted animals, it could be postulated that the shift of apoA-IV into this fraction in gemfibrozil-treated rats is related to an accelerated clearance of chylomicrons. It is concluded that gemfibrozil largely prevents the accumulation of abnormal lipoproteins in this model of dyslipoproteinemia, and that apoE may play a critical role in this normalization process.  相似文献   

9.
Chick skin slices were incubated with [35S]methionine and labeled apoA-I was immunoprecipitated from incubation medium and tissue homogenate. ApoA-I accounted for approximately 13 and 2.5% of radioactive medium and cell proteins, respectively. After ultracentrifugation of the medium, 55% of labeled apoA-I was found as a constituent of lipoproteins (d less than 1.210 g/ml) and 45% in a lipid-poor form (1.210-1.260 g/ml). To ascertain whether this large proportion of lipid-poor apoA-I was due to a dissociation of this peptide from medium lipoproteins during ultracentrifugation, labeled incubation medium was applied to an anti-chick apoA-I immunoaffinity column. The material bound to the column was analyzed by nondenaturing polyacrylamide gradient gel electrophoresis and found to contain three subpopulations of lipoproteins with a particle size of 12, 11, and 9 nm, respectively. The radioactivity of these subpopulations accounted for 82% of total radioactive medium apoA-I. ApoA-I was localized by immunohistochemistry in the viable cells of the epidermis and in the stratum corneum. Rat skin slices were found to synthesize and secrete apoE but no apoA-I. ApoA-I and apoE secreted by chick and rat skin, respectively, may play a role in the secretion of lipids from the differentiating keratinocytes and thus contribute to the formation of the hydrophobic barrier of the skin.  相似文献   

10.
The heterogeneity of serum lipoproteins (excluding very low density (VLDL) and intermediate density (IDL) lipoproteins) and that of lipoproteins secreted by HepG2 cells has been studied by immunoblot analysis of the apolipoprotein composition of the particles separated by polyacrylamide gradient gel electrophoresis (GGE) under nondenaturing conditions. The reactions of antibodies to apoA-I, apoA-II, apoE, apoB, apoD, and apoA-IV have revealed discrete bands of particles which differ widely in size and apolipoprotein composition. GGE of native serum lipoproteins demonstrated that apoA-II is present in lipoproteins of limited size heterogeneity (apparent molecular mass 345,000 to 305,000) and that apoB is present in low density lipoproteins (LDL) and absent from all smaller or denser lipoproteins. In contrast, serum apoA-I, E, D, and A-IV are present in very heterogeneous particles. Serum apoA-I is present mainly in particles of 305 to 130 kDa where it is associated with apoA-II, and in decreasing order of immunoreactivity in particles of 130-90 kDa, 56 kDa, 815-345 kDa, and finally within the size range of LDL, all regions where there is little detectable apoA-II. Serum apoE is present in three defined fractions, one within the size range of LDL, one containing heterogeneous particles between 640 and 345 kDa, and one defined fraction at 96 kDa. Serum apoD is also present in three defined fractions, one comigrating with LDL, one containing heterogeneous particles between 390 and 150 kDa, and one band on the migration front. Most of serum apoA-IV is contained in a band comigrating with albumin. GGE of centrifugally prepared LDL shows the presence of apoB, apoE, and apoD, but not that of apoA-I. However, the particles containing apoA-I, which, in serum, migrated within the LDL size range and as bands of 815 to 345 kDa, were recovered upon centrifugation in the d greater than 1.21 g/ml fraction. GGE of high density lipoproteins (HDL) indicated that most of apoA-I, A-II, and A-IV were present in lipoproteins of the same apparent molecular mass (390-152 kDa). ApoD tended to be associated with large HDL, and this was also significant for HDL apoE, which is present in lipoproteins ranging from 640 to 275 kDa. GGE of very high density lipoproteins (VHDL) presented some striking features, one of which was the occurrence of apolipoproteins in very discrete bands of different molecular mass. ApoA-II was bimodally distributed at 250-175 kDa and 175-136 kDa, the latter fraction also containing apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We have studied the synthesis, modification, and secretion of rat apoE in primary cultures of neonatal aortic smooth muscle cells and adult rat hepatocytes. The cultures were pulsed with [35S]methionine and the intracellular and secreted apoE were immunoprecipitated and analyzed by two-dimensional isoelectric focusing/polyacrylamide gel electrophoresis and autoradiography. A short pulse (10 min) showed the presence of a major unmodified apoE form in both cultures. This form comigrated on two-dimensional gels with the major rat plasma apoE isoprotein. A longer pulse (15-120 min) resulted in the progressive appearance of intracellularly modified apoE isoproteins in both cultures. The apoE secreted by aortic smooth muscle cells consisted exclusively of sialated apoE isoproteins that were sensitive to neuraminidase treatment. In contrast, the apoE secreted by primary cultures of adult rat hepatocytes, organ cultures of neonatal rat liver, as well as rat plasma apoE, contained several minor modified isoproteins. Nascent apoE secreted by the aortic smooth muscle cell cultures floats in the density range of 1.09 to 1.186 g/ml. We conclude that aortic smooth muscle cells can synthesize and secrete sialated apoE isoproteins associated with nascent lipoproteins floating in the high density lipoprotein region.  相似文献   

12.
To examine the role of apolipoprotein A-IV (apoA-IV) in the intracellular trafficking and secretion of apoB, COS cells were cotransfected with microsomal triglyceride transfer protein (MTP), apoB-41 (amino terminal 41% of apoB), and either native apoA-IV or apoA-IV modified with the carboxy-terminal endoplasmic reticulum (ER) retention signal, KDEL (apoA-IV-KDEL). As expected, apoA-IV-KDEL was inefficiently secreted relative to native apoA-IV. Coexpression of apoB-41 with apoA-IV-KDEL reduced the secretion of apoB-41 by approximately 80%. The apoA-IV-KDEL effect was specific, as neither KDEL-modified forms of human serum albumin or apoA-I affected apoB-41 secretion. Similar results were observed in McA-RH7777 rat hepatoma cells, which express endogenous MTP. The full inhibitory effect of apoA-IV-KDEL on apoB secretion was observed only for forms of apoB containing a minimum of the amino-terminal 25% of the protein (apoB-25). However, apoA-IV-KDEL inhibited the secretion of both lipid-associated and lipid-poor forms of apoB-25. Dual-label immunofluorescence microscopy of cells transfected with native apoA-IV and apoB-25 revealed that both apolipoproteins were localized to the ER and Golgi, as expected. However, when apoA-IV-KDEL was cotransfected with apoB-25, both proteins localized primarily to the ER. These data suggest that apoA-IV may physically interact with apoB in the secretory pathway, perhaps reflecting a role in modulating the process of triglyceride-rich lipoprotein assembly and secretion.  相似文献   

13.
We aimed to identify mechanisms by which apolipoprotein B-48 (apoB-48) could have an atherogenic role by simultaneously studying the metabolism of postprandial apoB-48 and apoB-100 lipoproteins. The kinetics of apoB-48 and apoB-100, each in four density subfractions of VLDL and intermediate density lipoprotein (IDL), were studied by stable isotope labeling in a constantly fed state with half-hourly administration of almond oil in five postmenopausal women. A non-steady-state, multicompartmental model was used. Despite a much lower production rate, VLDL and IDL apoB-48 shared a similar secretion pattern with apoB-100: both were directly secreted into all fractions with similar percentage mass distributions. Fractional catabolic rates (FCRs) of apoB-48 and apoB-100 were similar in VLDL and IDL. We identified a fast turnover compartment of light VLDL that had a residence time of <30 min for apoB-48 and apoB-100. Finally, a high secretion rate of apoB-48 was associated with a slow FCR of VLDL and IDL apoB-100. In conclusion, the intestine secretes a spectrum of apoB lipoproteins, similar to what the liver secretes, albeit with a much lower secretion rate. Once in plasma, intestinal and hepatic triglyceride-rich lipoproteins have similar rates of clearance and participate interactively in similar metabolic pathways, with high apoB-48 production inhibiting the clearance of apoB-100.  相似文献   

14.
The production of lipids, apolipoproteins (apo), and lipoproteins induced by oleic acid has been examined in Caco-2 cells. The rates of accumulation in the control medium of 15-day-old Caco-2 cells of triglycerides, unesterified cholesterol, and cholesteryl esters were 102 +/- 8, 73 +/- 5, and 11 +/- 1 ng/mg cell protein/h, respectively; the accumulation rates for apolipoproteins A-I, B, C-III, and E were 111 +/- 9, 53 +/- 4, 13 +/- 1, and 63 +/- 4 ng/mg cell protein/h, respectively. Whereas apolipoproteins A-IV and C-II were detected by immunoblotting, apoA-II was absent in most culture media. In contrast to an early production of apolipoproteins A-I and E occurring 2 days after plating, the apoB expression appeared to be differentiation-dependent and was not measurable in the medium until the sixth day post-confluency. In the control medium, very low density lipoproteins (VLDL), low density lipoproteins (LDL), high density lipoproteins (HDL), and lipid-poor very high density lipoproteins (VHDL) accounted for 12%, 46%, 18%, and 24% of the total lipid and apolipoprotein contents, respectively. The triglyceride-rich VLDL contained mainly apoE (75%) and apoB (23%), while the protein moiety of LDL was composed of apoB (59%), apoE (20%), apoA-I (15%), and apoC-III (6%). The cholesterol-rich HDL contained mainly apoA-I (69%) and apoE (27%). In the control medium, major portions of apolipoproteins B and C-III (93-97%) were present in LDL, whereas the main parts of apoA-I (92%) and apoE (76%) were associated with HDL and VHDL. Oleate increased the production of triglycerides 10-fold, cholesteryl esters 7-fold, and apoB 2- to 4-fold. There was also a moderate increase (39%) in the production of apoC-III but no significant changes in those of apolipoproteins A-I and E. These increases were reflected mainly in a 55-fold elevation in the concentration of VLDL, and a 2-fold increase in the level of LDL; there were no significant changes in HDL and VHDL. VLDL contained the major parts of total neutral lipids (74-86%), apoB (65%), apoC-III (81%) and apoE (58%). In the presence of oleate, the VLDL, LDL, HDL, and VHDL accounted for 76%, 15%, 3%, and 6% of the total lipoproteins, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Apolipoprotein A-I isoforms in human lymph: effect of fat absorption   总被引:2,自引:0,他引:2  
The effect of fat feeding (100 g of cream) on the apoA-I isoproteins distribution has been analyzed by two-dimensional gel electrophoresis in the chylomicrons, VLDL, LDL, and HDL isolated from the thoracic duct lymph of patients undergoing lymph drainage for immunosuppression, Isoforms apoA-I3 and apoA-I4 are the most abundant apoA-I isoproteins in plasma lipoproteins as well as in lymph lipoproteins collected in the fasting state. Fat feeding, on the other hand, results in a marked change in the apoA-I isoform pattern in lymph chylomicrons and VLDL, with a significant increase in the relative concentration of the apoA-I1 isoform. As a result the total concentration of this isoprotein in the lymph increased. The data indicate that fat feeding is associated with major changes in the distribution of the apoA-I isoforms in the lymph (d less than 1.006 g/ml lipoproteins), which may be of significance in their plasma catabolism.  相似文献   

16.
We have used site-directed in vitro mutagenesis to alter the codon ACT of human apoCIII gene, specifying Thr-74, to GCT (Ala-74). The normal and mutant apoCIII genes were then placed under the control of the mouse metallothionein 1 promoter in a bovine papilloma virus vector and were used for cell transfection and selection of stable cell lines. Blotting analysis of RNA isolated from several independent cell clones showed that both the normal and mutant genes produced apoCIII mRNA in amounts larger than that found in human fetal liver. Pulse-chase analysis of cell clones expressing the normal and mutant apoCIII genes showed that only the normal apoCIII is modified intracellularly to produce a disialated form (apoCIIIs2). Cell clones expressing the normal apoCIII gene secrete exclusively the disialated form, whereas those expressing the mutant gene secrete the unmodified form. The amount of mutant apoCIII protein produced by C127 cell clones expressing the mutant gene was reduced as compared to that produced by the control cells. Density gradient ultracentrifugation analysis of the secreted apoCIII showed that the flotation properties of the secreted normal and mutant proteins were similar. These findings suggest that the intracellular glycosylation of apoCIII is not required for its intracellular transport and secretion. Furthermore, lack of glycosylation has no effect on the relative affinities of apoCIII for plasma very low density lipoproteins and high density lipoproteins.  相似文献   

17.
Kypreos KE 《Biochemistry》2008,47(39):10491-10502
In this study, the ability of the lipid transporter ABCA1 and apolipoprotein CIII (apoCIII) to promote the de novo biogenesis of apoCIII-containing HDL in vivo and the role of this HDL in apoCIII-induced hypertriglyceridemia were investigated, using adenovirus-mediated gene transfer in apoE (-/-) x apoA-I (-/-) mice or ABCA1 (-/-) mice. Injection of apoE (-/-) x apoA-I (-/-) mice with 8 x 10 (8) pfu of an adenovirus expressing the wild-type human apoCIII (AdGFP-CIII g) generated HDL-like particles and triggered only a modest increase in plasma cholesterol and triglyceride levels of these mice, 3-5 days postinfection. Plasma human apoCIII was distributed among HDL, VLDL/IDL, and LDL in these mice. In contrast, ABCA1 (-/-) mice treated similarly failed to form HDL particles and developed severe hypertriglyceridemia which could be alleviated by coinfection with an adenovirus expressing human LpL, while their plasma cholesterol levels remained unchanged 3-5 days postinfection with AdGFP-CIII g. Human apoCIII in these mice accumulated exclusively on VLDL. Control experiments confirmed that the differences between apoE (-/-) x apoA-I (-/-) and ABCA1 (-/-) mice expressing human apoCIII were not due to differences in apoCIII expression. Overall, these data show that ABCA1 and human apoCIII promote the formation of apoCIII-containing HDL-like particles that are distinct from classical apoE- or apoA-I-containing HDL. Formation of apoCIII-containing HDL prevents excess accumulation of plasma apoCIII on VLDL and allows for the efficient lipolysis of VLDL triglycerides by LpL. Furthermore, the data establish that ABCA1 and apoCIII-containing HDL play key roles in the prevention of apoCIII-induced hypertriglyceridemia in mice.  相似文献   

18.
Apolipoprotein E (apoE) is essential for the clearance of plasma chylomicron and VLDL remnants. The human APOE locus is polymorphic and 5-10% of APOE*2 homozygotes exhibit type-III hyperlipoproteinemia (THL), while the remaining homozygotes have less than normal plasma cholesterol. In contrast, mice expressing APOE*2 in place of the mouse Apoe (Apoe(2/2) mice) are markedly hyperlipoproteinemic, suggesting a species difference in lipid metabolism (e.g., editing of apolipoprotein B) enhances THL development. Since apoB-100 has an LDLR binding site absent in apoB-48, we hypothesized that the Apoe(2/2) THL phenotype would improve if all Apoe(2/2) VLDL contained apoB-100. To test this, we crossed Apoe(2/2) mice with mice lacking the editing enzyme for apoB (Apobec(-/-)). Consistent with an increase in remnant clearance, Apoe(2/2). Apobec(-/-) mice have a significant reduction in IDL/LDL cholesterol (IDL/LDL-C) compared with Apoe(2/2) mice. However, Apoe(2/2).Apobec(-/-) mice have twice as much VLDL triglyceride as Apoe(2/2) mice. In vitro tests show the apoB-100-containing VLDL are poorer substrates for lipoprotein lipase than apoB-48-containing VLDL. Thus, despite a lowering in IDL/LDL-C, substituting apoB-48 lipoproteins with apoB-100 lipoproteins did not improve the THL phenotype in the Apoe(2/2).Apobec(-/-) mice, because apoB-48 and apoB-100 differentially influence the catabolism of lipoproteins.  相似文献   

19.
A method is described which will determine the distribution of individual apolipoproteins within the HDL subclasses. This method requires 1-2 microliters of plasma per determination and involves six steps: 1) electrophoresis of samples on non-denaturing 2-30% concave acrylamide gradient gels; 2) electrophoretic transfer of the lipoproteins to charge-modified nylon membranes; 3) fixation of the transferred lipoproteins with glutaraldehyde; 4) immunolocalization of the apolipoproteins with iodinated monospecific antibodies; 5) autoradiography followed by densitometry; and 6) reduction of the data to provide a plot of percent distribution versus particle size. When this method was applied to the analysis of rat apolipoproteins, differences were noted in the distribution of apoA-I, apoA-IV, and apoE. The majority of apoA-I was localized to HDL particles between 9 and 12 nm in diameter, with a median diameter of 10.0 nm, while apoE resided on substantially larger particles with a median diameter of 12.5 nm. ApoA-IV could be localized to three distinct areas: an HDL particle with a median diameter approximately 0.4 nm larger than apoA-I HDL, a particle smaller than albumin (lipoprotein-free apoA-IV), and a particle of 7.6 nm that does not appear to contain apoA-I or apoE.  相似文献   

20.
Apolipoprotein A-IV (apoA-IV) is an exchangeable apolipoprotein that shares many functional similarities with related apolipoproteins such as apoE and apoA-I but has also been implicated as a circulating satiety factor. However, despite the fact that it contains many predicted amphipathic alpha-helical domains, relatively little is known about its tertiary structure. We hypothesized that apoA-IV exhibits a characteristic functional domain organization that has been proposed to define apoE and apoA-I. To test this, we created truncation mutants in a bacterial system that deleted amino acids from either the N- or C-terminal ends of human apoA-IV. We found that apoA-IV was less stable than apoA-I but was more highly organized in terms of its cooperativity of unfolding. Deletion of the extreme N and C termini of apoA-IV did not significantly affect the cooperativity of unfolding, but deletions past amino acid 333 on the C terminus or amino acid 61 on the N terminus had major destabilizing effects. Functionally, apoA-IV was less efficient than apoA-I at clearing multilamellar phospholipid liposomes and promoting ATP-binding cassette transporter A1-mediated cholesterol efflux. However, deletion of a C-terminal region of apoA-IV, which is devoid of predicted amphipathic alpha helices (amino acids 333-376) stimulated both of these activities dramatically. We conclude that the amphipathic alpha helices in apoA-IV form a single, large domain that may be similar to the N-terminal helical bundle domains of apoA-I and apoE but that apoA-IV lacks the C-terminal lipid-binding and cholesterol efflux-promoting domain present in these apolipoproteins. In fact, the C terminus of apoA-IV appears to reduce the ability of apoA-IV to interact with lipids and promote cholesterol efflux. This indicates that, although apoA-IV may have evolved from gene duplication events of ancestral apolipoproteins and shares the basic amphipathic helical building blocks, the overall localization of functional domains within the sequence is quite different from apoA-I and apoE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号