首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
The endoplasmic reticulum calcium sensors stromal interaction molecules 1 and 2 (STIM1 and STIM2) are key modulators of store-operated calcium entry. Both these sensors play a major role in physiological functions in normal tissue and in pathology, but available data on native STIM2-regulated plasma membrane channels are scarce. Only a few studies have recorded STIM2-induced CRAC (calcium release-activated calcium) currents. On the other hand, many cell types display store-operated currents different from CRAC. The STIM1 protein regulates not only CRAC but also transient receptor potential canonical (TRPC) channels, but it has remained unclear whether STIM2 is capable of regulating store-operated non-CRAC channels. Here we present for the first time experimental evidence for the existence of endogenous non-CRAC STIM2-regulated channels. As shown in single-channel patch clamp experiments on HEK293 cells, selective activation of native STIM2 proteins or STIM2 overexpression results in store-operated activation of Imin channels, whereas STIM1 activation blocks this process. Changes in the ratio between active STIM2 and STIM1 proteins can switch the regulation of Imin channels between store-operated and store-independent modes. We have previously characterized electrophysiological properties of different Ca2+ influx channels coexisting in HEK293 cells. The results of this study show that STIM1 and STIM2 differ in the ability to activate these store-operated channels; Imin channels are regulated by STIM2, TRPC3-containing INS channels are induced by STIM1, and TRPC1-composed Imax channels are activated by both STIM1 and STIM2. These new data about cross-talk between STIM1 and STIM2 and their different roles in store-operated channel activation are indicative of an additional level in the regulation of store-operated calcium entry pathways.  相似文献   

4.
Calcium signaling is a central mechanism for numerous cellular functions and particularly relevant for immune cell proliferation. However, the role of calcium influx in mitotic cell cycle progression is largely unknown. We here report that proliferating rat mast cells RBL-2H3 tightly control their major store-operated calcium influx pathway, I(CRAC), during cell cycle progression. While I(CRAC) is maintained at control levels during the first gap phase (G1), the current is significantly up-regulated in preparation for and during chromatin duplication. However, mitosis strongly suppresses I(CRAC). Non-proliferating cells deprived of growth hormones strongly down-regulate I(CRAC) while increasing cell volume. We further show that the other known calcium (and magnesium) influx pathway in mast cells, the TRPM7-like magnesium-nucleotide-regulated metal (MagNuM) current, is largely uncoupled from cell cycle regulation except in G1. Taken together, our results demonstrate that both store-operated calcium influx via I(CRAC) and MagNuM are regulated at crucial checkpoints during cell cycle progression.  相似文献   

5.
Depletion of intracellular calcium stores activates store-operated calcium entry across the plasma membrane in many cells. STIM1, the putative calcium sensor in the endoplasmic reticulum, and the calcium release-activated calcium (CRAC) modulator CRACM1 (also known as Orai1) in the plasma membrane have recently been shown to be essential for controlling the store-operated CRAC current (I(CRAC)). However, individual overexpression of either protein fails to significantly amplify I(CRAC). Here, we show that STIM1 and CRACM1 interact functionally. Overexpression of both proteins greatly potentiates I(CRAC), suggesting that STIM1 and CRACM1 mutually limit store-operated currents and that CRACM1 may be the long-sought CRAC channel.  相似文献   

6.
Activation of phospholipase C-coupled receptors leads to the release of Ca2+ from Ca2+ stores, and subsequent activation of store-operated cation (SOC) channels, promoting sustained Ca2+ influx. The most studied SOC channels are CRAC ("calcium-release activated calcium") channels exhibiting a very high selectivity for Ca2+. However, there are many SOC channels permeable for Ca2+ but having a lower selectivity. And while Ca2+ influx is important for many biological processes, little is known about the types of SOC channels and mechanisms of SOC channel activation. Previously, we described store-operated Imin channels in A431 cells. Here, by whole-cell recordings, we demonstrated that the store depletion activates two types of current in A431 cells--highly selective for divalent cations (presumably, ICRAC), and moderately selective (ISOC supported by Imin channels). These currents can be registered separately and have different developing time and amplitude. Coexisting of two different types of SOC channels in A431 cells seems to facilitate the control of intracellular Ca(2+)-dependent processes.  相似文献   

7.
Denys A  Aires V  Hichami A  Khan NA 《FEBS letters》2004,564(1-2):177-182
This study was conducted on human Jurkat T-cells to investigate the role of depletion of intracellular Ca(2+) stores in the phosphorylation of two mitogen-activated protein kinases (MAPKs), i.e. extracellular signal-regulated kinase (ERK) 1 and ERK2, and their modulation by a polyunsaturated fatty acid, docosahexaenoic acid (DHA). We observed that thapsigargin (TG) stimulated MAPK activation by store-operated calcium (SOC) influx via opening of calcium release-activated calcium (CRAC) channels as tyrphostin-A9, a CRAC channel blocker, and two SOC influx inhibitors, econazole and SKF-96365, diminished the action of the former. TG-stimulated ERK1/ERK2 phosphorylation was also diminished in buffer containing EGTA, a calcium chelator, further suggesting the implication of calcium influx in MAPK activation in these cells. Moreover, TG stimulated the production of diacylglycerol (DAG) by activating phospholipase D (PLD) as propranolol (PROP) (a PLD inhibitor), but not U73122 (a phospholipase C inhibitor), inhibited TG-evoked DAG production in these cells. DAG production and protein kinase C (PKC) activation were involved upstream of MAPK activation as PROP and GF109203X, a PKC inhibitor, abolished the action of TG on ERK1/ERK2 phosphorylation. Furthermore, DHA seems to act by inhibiting PKC activation as this fatty acid diminished TG- and phorbol 12-myristate 13-acetate-induced ERK1/ERK2 phosphorylation in these cells. Together these results suggest that Ca(2+) influx via CRAC channels is implicated in PLD/PKC/MAPK activation which may be a target of physiological agents such as DHA.  相似文献   

8.
Antigen-evoked influx of extracellular Ca(2+) into mast cells may occur via store-operated Ca(2+) channels called calcium release-activated calcium (CRAC) channels. In mast cells of the rat basophilic leukemia cell line (RBL-2H3), cholera toxin (CT) potentiates antigen-driven uptake of (45)Ca(2+) through cAMP-independent means. Here, we have used perforated patch clamp recording at physiological temperature to test whether cholera toxin or its substrate, Gs, directly modulates the activity of CRAC channels. Cholera toxin dramatically amplified (two- to fourfold) the Ca(2)+ release-activated Ca(2+) current (I(CRAC)) elicited by suboptimal concentrations of antigen, without itself inducing I(CRAC), and this enhancement was not mimicked by cAMP elevation. In contrast, cholera toxin did not affect the induction of I(CRAC) by thapsigargin, an inhibitor of organelle Ca(2+) pumps, or by intracellular dialysis with low Ca(2+) pipette solutions. Thus, the activity of CRAC channels is not directly controlled by cholera toxin or Gsalpha. Nor was the potentiation of I(CRAC) due to enhancement of phosphoinositide hydrolysis or calcium release. Because Gs and the A subunit of cholera toxin bind to ADP ribosylation factor (ARF) and could modulate its activity, we tested the sensitivity of antigen-evoked I(CRAC) to brefeldin A, an inhibitor of ARF-dependent functions, including vesicle transport. Brefeldin A blocked the enhancement of antigen-evoked I(CRAC) without inhibiting ADP ribosylation of Gsalpha, but it did not affect I(CRAC) induced by suboptimal antigen or by thapsigargin. These data provide new evidence that CRAC channels are a major route for Fcin receptor I-triggered Ca(2+) influx, and they suggest that ARF may modulate the induction of I(CRAC) by antigen.  相似文献   

9.
Store-operated calcium entry is essential for many signaling processes in nonexcitable cells. The best studied store-operated calcium current is the calcium release-activated calcium (CRAC) current in T-cells and mast cells, with Orai1 representing the essential pore forming subunit. Although it is known that functional CRAC channels in store-depleted cells are composed of four Orai1 subunits, the stoichiometric composition in quiescent cells is still discussed controversially: both a tetrameric and a dimeric stoichiometry of resting state Orai1 have been reported. We obtained here robust and similar FRET values on labeled tandem repeat constructs of Orai1 before and after store depletion, suggesting an unchanged tetrameric stoichiometry. Moreover, we directly visualized the stoichiometry of mobile Orai1 channels in live cells using a new single molecule recording modality that combines single molecule tracking and brightness analysis. By alternating imaging and photobleaching pulses, we recorded trajectories of single, fluorescently labeled Orai1 channels, with each trajectory consisting of bright and dim segments, corresponding to higher and lower numbers of colocalized active GFP label. The according brightness values were used for global fitting and statistical analysis, yielding a tetrameric subunit composition of mobile Orai1 channels in resting cells.  相似文献   

10.
Agonist-receptor interactions at the plasma membrane often lead to activation of store-operated channels (SOCs) in the plasma membrane, allowing for sustained Ca(2+) influx. While Ca(2+) influx is important for many biological processes, little is known about the types of SOCs, the nature of the depletion signal, or how the SOCs are activated. We recently showed that in addition to the Ca(2+) release-activated Ca(2+) (CRAC) channel, both Jurkat T cells and human peripheral blood mononuclear cells express novel store-operated nonselective cation channels that we termed Ca(2+) release-activated nonselective cation (CRANC) channels. Here we demonstrate that activation of both CRAC and CRANC channels is accelerated by a soluble Ca(2+) influx factor (CIF). In addition, CRANC channels in inside-out plasma membrane patches are directly activated upon exposure of their cytoplasmic side to highly purified CIF preparations. Furthermore, CRANC channels are also directly activated by diacylglycerol. These results strongly suggest that the Ca(2+) store-depletion signal is a diffusible molecule and that at least some SOCs may have dual activation mechanisms.  相似文献   

11.
Although store-operated calcium entry (SOCE) was identified more that two decades ago, understanding the molecular mechanisms that regulate and mediate this process continue to pose a major challenge to investigators in this field. Thus, there has been major focus on determining which of the models proposed for this mechanism is valid and conclusively establishing the components of the store-operated calcium (SOC) channel(s). The transient receptor potential canonical (TRPC) proteins have been suggested as candidate components of the elusive store-operated Ca(2+) entry channel. While all TRPCs are activated in response to agonist-stimulated phosphatidylinositol 4,5, bisphosphate (PIP(2)) hydrolysis, only some display store-dependent regulation. TRPC1 is currently the strongest candidate component of SOC and is shown to contribute to SOCE in many cell types. Heteromeric interactions of TRPC1 with other TRPCs generate diverse SOC channels. Recent studies have revealed novel components of SOCE, namely the stromal interacting molecule (STIM) and Orai proteins. While STIM1 has been suggested to be the ER-Ca(2+) sensor protein relaying the signal to the plasma membrane for activation of SOCE, Orai1 is reported to be the pore-forming component of CRAC channel that mediates SOCE in T-lymphocytes and other hematopoetic cells. Several studies now demonstrate that TRPC1 also associates with STIM1 suggesting that SOC and CRAC channels are regulated by similar molecular components. Interestingly, TRPC1 is also associated with Orai1 and a TRPC1-Orai1-STIM1 ternary complex contributes to SOC channel function. This review will focus on the diverse SOC channels formed by TRPC1 and the suggestion that TRPC1 might serve as a molecular link that determines their regulation by store-depletion.  相似文献   

12.
Bakowski D  Parekh AB 《Cell calcium》2002,32(5-6):379-391
CRAC channels are key calcium conduits in both physiological and pathological states. Understanding how these channels are controlled is important as this will not only provide insight into a novel signal transduction pathway coupling intracellular stores to the channels in the plasma membrane, but might also be of clinical relevance. Determining the molecular identity of the CRAC channels will certainly be a major step forward. Like all Ca(2+)-selective channels, CRAC channels lose their selectivity in divalent-free external solution to support large monovalent Na(+) currents. This approach has provided new insight into channel permeation and selectivity, and identifies some interesting differences between CRAC channels and voltage-operated calcium channels (VOCCs). Studies in divalent-free solution are a double-edged sword, however. Electrophysiologists need to be wary because some of the conditions used to study I(CRAC) in divalent-free external solution, notably omission of Mg(2+)/Mg-ATP from the recording pipette solution, activates an additional current permeating through Mg(2+)-nucleotide-regulated metal ion current (MagNuM; TRPM7) channels. This channel underlies the large single-channel events that have been attributed to CRAC channels in the past and which have been used to as a tool to identify store-operated channels in native cells and recombinant expression systems.Are we any closer to identifying the elusive CRAC channel gene(s)? TRPV6 seemed a very attractive candidate, but one of the main arguments supporting it was a single-channel conductance in divalent-free solution similar to that for CRAC reported under conditions where MagNuM is active. We now know that the conductance of TRPV6 is approximately 200-fold larger than that of CRAC in native tissue. Moreover, it is unclear if TRPV6 is store-operated. Further work on TRPV6, particularly whether its single-channel conductance is still high under conditions where it apparently forms multimers with endogenous store-operated channels, and whether it is activated by a variety of store depletion protocols, will be helpful in finally resolving this issue.  相似文献   

13.
Bakowski D  Parekh AB 《Cell calcium》2007,42(3):333-339
Store-operated Ca2+ entry through CRAC channels is a major route for Ca2+ influx in non-excitable cells. Studies on store-operated channel selectivity using fluorescent dyes have found that the channels are impermeable to Ba2+. Furthermore, in such studies, agonists have been reported to increase Ba2+ influx, leading to the conclusion that additional Ca2+ entry pathways (permeable to Ba2+) co-exist with the Ba2+-impermeable store-operated channels. However, patch clamp experiments demonstrate that CRAC channels are permeable to Ba2+. We have addressed this paradox using fluorescence measurements and whole cell patch clamp recordings of ICRAC. In store-depleted cells loaded with fura 2, Ba2+ application results in a slower and smaller rise in fluorescence than is the case with Ca2+. Ba2+, unlike Ca2+, depolarises the membrane potential by approximately 40 mV, due to rapid block of an inwardly rectifying K+ current. Although Ba2+ permeates CRAC channels at very negative potentials in patch clamp recordings, Ba2+ permeation is steeply voltage-dependent. This combination of Ba2+-dependent depolarisation and voltage-dependent Ba2+ permeation accounts for the apparent lack of Ba2+ permeation through store-operated channels seen in fluorescence experiments. Our findings identify major limitations with the use of Ba2+ as a surrogate for Ca2+ in probing Ca2+ entry pathways and raise the possibility that some of the previous reports proposing multiple Ca2+ entry pathways based on Ba2+ entry into fura 2-loaded cells could be explained by voltage-dependent Ba2+ permeation through CRAC channels.  相似文献   

14.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

15.
16.
We have studied modulation of “store-operated calcium influx” by tyrosine phosphatases in the pancreatic acinar cell line AR42J and in HEK 293 cells. We show that inhibition of tyrosine phosphatases by bis-(N,N-dimethyl-hydroxamido) hydrooxovanadate (DMHV) leads to an increase in Ca2+ release-activated Ca2+ (CRAC) entry. This effect can be blocked in the presence of 2-aminoethyldiphenyl borate (2-APB). Furthermore, transfection of HEK 293 cells with the human wild-type tyrosine phosphatase PTP1B leads to inhibition of CRAC influx, whereas transfection with the substrate-trapping mutant of PTP1B (D181A) slightly increases Ca2+ influx. It also decreases enzymatic activity of PTP1B as compared to non-transfected cells. Our data suggest that CRAC influx is modulated by tyrosine phosphorylation and dephosphorylation which involves the tyrosine phosphatase PTP1B.  相似文献   

17.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types, particularly of hemopoietic origin, store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. However, little is known about the downstream consequences of CRAC channel activation. Here, we report that Ca2+ entry through CRAC channels stimulates arachidonic acid production, whereas Ca2+ release from the stores is ineffective even though the latter evokes a robust intracellular Ca2+ signal. We find that arachidonic acid released by Ca2+ entering through CRAC channels is used to synthesize the potent paracrine proinflammatory signal leukotriene C4 (LTC4). Both pharmacological inhibitors of CRAC channels and mitochondrial depolarization, which impairs CRAC channel activity, suppress arachidonic acid release and LTC4 secretion. Thus, arachidonic acid release is preferentially stimulated by elevated subplasmalemmal Ca2+ levels due to open CRAC channels, suggesting that the enzyme is located close to the CRAC channels. Our results also identify a novel role for CRAC channels, namely the activation of a downstream signal transduction pathway resulting in the secretion of LTC4. Finally, mitochondria are key determinants of the generation of both intracellular (arachidonic acid) and paracrine (LTC4) signals through their effects on CRAC channel activity.  相似文献   

18.
In most non-excitable cells, calcium (Ca(2+)) release from the inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx through the plasma membrane Ca(2+) channels whose molecular composition is poorly understood. Several members of mammalian TRP-related protein family have been implicated to both receptor- and store-operated Ca(2+) influx. Here we investigated the role of the native transient receptor potential 3 (TRPC3) homologue in mediating the store- and receptor-operated calcium entry in A431 cells. We show that suppression of TRPC3 protein levels by small interfering RNA (siRNA) leads to a significant reduction in store-operated calcium influx without affecting the receptor-operated calcium influx. With single-channel analysis, we further demonstrate that reduction of TRPC3 levels results in suppression of specific subtype of store-operated calcium channels and activation of store-independent channels. Our data suggest that TRPC3 is required for the formation of functional store-operated channels in A431 cells.  相似文献   

19.
20.
In nonexcitable cells, receptor stimulation evokes Ca(2+) release from the endoplasmic reticulum stores followed by Ca(2+) influx through store-operated Ca(2+) channels in the plasma membrane. In mast cells, store-operated entry is mediated via Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we find that stimulation of muscarinic receptors in cultured mast cells results in Ca(2+)-dependent activation of protein kinase Calpha and the mitogen activated protein kinases ERK1/2 and this is required for the subsequent stimulation of the enzymes Ca(2+)-dependent phospholipase A(2) and 5-lipoxygenase, generating the intracellular messenger arachidonic acid and the proinflammatory intercellular messenger leukotriene C(4). In cell population studies, ERK activation, arachidonic acid release, and leukotriene C(4) secretion were all graded with stimulus intensity. However, at a single cell level, Ca(2+) influx was related to agonist concentration in an essentially all-or-none manner. This paradox of all-or-none CRAC channel activation in single cells with graded responses in cell populations was resolved by the finding that increasing agonist concentration recruited more mast cells but each cell responded by generating all-or-none Ca(2+) influx. These findings were extended to acutely isolated rat peritoneal mast cells where muscarinic or P2Y receptor stimulation evoked all-or-none activation of Ca(2+)entry but graded responses in cell populations. Our results identify a novel way for grading responses to agonists in immune cells and highlight the importance of CRAC channels as a key pharmacological target to control mast cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号