首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Measurement of unesterified choline in blood samples taken from five conscious multi-cannulated sheep indicated a significant production of unesterified choline by the alimentary tract, as judged by the portal venous minus arterial difference and significant uptake by the liver, as judged from the portal venous minus hepatic venous and arterial minus hepatic venous differences. 2. A mean liver blood flow rate of 1.68 +/- 0.22 1/min for the five sheep was determined by bromosulphophthalein clearance and, combined with the differences in unesterified choline across organs, gave a production rate of free choline of 9.1 mmol/day by the alimentary tract and an uptake by the liver of 13.2 mmol/day. 3. Infusion of [methyl-3H]choline chloride into the portal vein of a sheep over 1 hr and subsequent isolation of the bile for several days showed over 70% cumulative recovery of the radioactivity in the choline moiety of bile phosphatidylcholine over a 120 hr period. 4. Subsequent infusion 17 days later of bile lipid [3H]choline via a duodenal fistula also gave approx. 70% cumulative recovery of radioactivity in the choline moiety of newly secreted bile phosphatidylcholine in 120 hr. 5. These results show a very extensive enterohepatic recirculation of bile choline in the sheep, which is in contrast to the situation in monogastric animals.  相似文献   

2.
Formation of unesterified choline by rat brain   总被引:8,自引:0,他引:8  
Two preparations of rat brain (ischemic intact brain and homogenized whole brain) formed large amounts of unesterified (free) choline when incubated at 37 degrees C. The accumulation of choline was inhibited by microwave irradiation of brain, or by heating of brain to 50 degrees C, and was maximal at 37 degrees C at pH 7.4-8.5. Choline formation was only observed in subcellular fractions of brain that contained membranes. In homogenates of brain, choline accumulated at a rate exceeding 10 nmol/mg protein per h. There was a significant decrease in brain phosphatidylcholine concentration (of 50 nmol/mg protein) during incubation for 1 h at 37 degrees C. Concentrations of phosphocholine rose (by 2.3 nmol/mg protein), and concentrations of glycerophosphocholine and sphingomyelin did not change during this period. We used radiolabeled phospholipids to trace the fate of phosphatidylcholine and sphingomyelin during incubations of homogenates of brain. Phosphatidylcholine was degraded to form phosphocholine, glycerophosphocholine and free choline. No lysophosphatidylcholine accumulated. Sphingomyelin was degraded to form phosphocholine and a small amount of free choline. Magnesium ions stimulated choline production, while zinc ions were a potent inhibitor. Other divalent cations (calcium, manganese) had little effect on choline accumulation. ATP concentrations in brain homogenates were less than 5 nmol/mg protein (rapidly microwaved brain contained 27 nmol/mg protein). Addition of ATP or ADP to brain homogenates increased ATP concentrations and significantly inhibited choline accumulation. ATP diminished the formation of choline from added phosphatidylcholine, lysophosphatidylcholine, phosphocholine and glycerophosphocholine. The effects of ATP, zinc ion, or magnesium ion upon choline accumulation were not mediated by changes in the rates of utilization of choline for formation of phosphocholine or phosphatidylcholine. In summary, we showed that there was enhanced formation of choline when ATP concentrations within brain were low. This choline was derived, in part, from the degradation of phosphatidylcholine, and we suggest that phospholipase A activity was the primary initiator of choline release from this phospholipid.  相似文献   

3.
The enzymatic formation of radioactive sphingomyelin from [14C]choline-labeled phosphatidylcholine was demonstrated to reside exclusively in the plasma membrane fraction of mouse fibroblasts. This activity has several properties in common with the phosphatidylcholine ceramide phosphocholine transferase of mouse liver microsomes. The enzyme has little if any phospholipase C activity and isotope dilution experiments suggest that phosphatidylcholine is the substrate rather than it is converted to CDP choline, phosphocholine, free choline or glycerophosphocholine prior to the transfer reaction. The activity is stimulated by the addition of bovine serum albumin and MnCl2 to the incubation mixtures. The plasma membrane localization of the enzyme suggests that it may have a central role in the biosynthetic pathways for sphingomyelin in mouse fibroblasts.  相似文献   

4.
The uptake and metabolism of [14C]choline in dissociated rat brain embryo cell cultures was examined as a function of the extracellular choline concentration. Choline uptake did not follow normal Michaelis-Menten kinetics, but rather exhibited two components with apparent Km of 0.016 mM and 0.96 mM. At low choline concentrations (high affinity uptake) most of the [14C]choline label was present in the phosphocholine fraction prior to the appearance of label in phospholipids. At high choline concentrations (low affinity uptake) a large proportion of the radioactivity was converted into acetylcholine. The dissimilarities between the formation of phosphocholine and acetylcholine as a function of choline concentration might be explained by the existence of two mutually independent enzymatic activities with different Km affinities for choline. Kinetic data augmented by double label studies, suggested that formation of choline phosphoglyceride proceeds entirely via a phosphocholine intermediate. Nearly all radioactivity in the lipid fraction is incorporated into choline phosphoglycerides. A higher turnover rate of choline incorporation into choline phosphoglycerides, accompanied by an increase in the levels of glycerophosphocholine, was observed in older cultures as compared to younger cultures. The metabolic implications of these findings in cultured brain cells in comparison with other in vitro systems are discussed.  相似文献   

5.
1. Injection of [Me-14C]choline into sheep indicated that the small amount of phosphatidylcholine present in abomasal digesta was largely (69%) of non-dietary or ruminal origin. 2. Long-term feeding of [Me-3H]choline to sheep produced insignificant labelling of plasma phosphatidylcholine, indicating that more than 99% of the choline body pool was of non-dietary origin. 3. In contrast, when rats were fed with [Me-3H]choline for similar periods, 18-54% of the tissue phosphatidylcholine was derived from dietary choline. 4. The loss of [14C]choline and 32P from the plasma phosphatidylcholine after a single injection of these isotopes indicated a markedly slower turnover of choline in the sheep compared with the rat. This observation, coupled with a lack of liver glycerophosphocholine diesterase, provides an explanation for the insensitivity of the sheep to an almost complete microbial destruction of dietary choline before alimentary-tract absorption.  相似文献   

6.
The concentration of unesterified choline in the plasma in the jugular vein of the rat (0.85 nmol/ml) was found to be three times that of the arterial supply to the brain (0.25 nmol/ml), indicating a higher efflux than uptake of unesterified choline by the brain. No such difference was found for the rabbit and no arterio-venous difference for phosphatidylcholine or lysophosphatidylcholine was observed in either species. No arterio-venous difference was found for choline in blood cells. The infusion of [Me-3H]choline into the circulation of the rat or rabbit indicated an uptake of radioactive choline by the brain and an efflux of non-radioactive choline. In the rabbit such an infusion produced a steady rise in the labelling of phosphatidylcholine and lysophosphatidylcholine in the plasma. When [14C2]ethanolamine was injected intraperitoneally into the rat there was a labelling of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in the plasma and cells of blood from the jugular vein and the arterial supply, as well as in the brain tissue. However, no labelling of unesterified choline in these tissues could be detected. Unesterified choline was shown to be liberated into the plasma when whole blood from the rat or man, but not the rabbit, was incubated for short periods at 30 degrees C.  相似文献   

7.
We have developed a reproducible and sensitive procedure for the isolation and measurement of choline, phosphocholine, glycerophosphocholine, phosphatidylcholine, lysophosphatidylcholine and acetylcholine in a single 100-mg sample of biological tissue. Tissues were spiked with 14C-methyl- and 2H-methyl- or 15N-choline labeled internal standards for each compound. They were extracted with chloroform/methanol/water and the aqueous and organic phases were dried. The organic phase was resuspended in chloroform/methanol (1/1, v/v) and an aliquot was applied to a silica-gel thin-layer chromatography plate. The plate was developed in chloroform/methanol/water (65/30/4, v/v). Segments which cochromatographed with external standards of phosphatidylcholine and lysophosphatidylcholine were stained, scraped, and hydrolyzed in 6 M methanolic-HCl at 80 degrees C for 60 min, liberating free choline. The aqueous phase was resuspended in methanol/water and injected onto a silica HPLC column. Choline and its metabolites were eluted using a binary nonlinear gradient of acetonitrile/ethanol/acetic acid/1 M ammonium acetate/water/0.1 M sodium phosphate (800/68/2/3/127/10, v/v changing to 400/68/44/88/400/10, v/v). Peaks were detected with an on-line radiometric detector, collected, and dried under vacuum. Each choline ester was digested in 6 M HCl at 80 degrees C to form choline. Choline was then converted to the propionyl ester and demethylated with sodium benzenethiolate. This volatile derivative was then isolated using gas chromatography and measured with a mass selective detector. Deuterated internal standards were used to correct for variations in recovery. Choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, lysophosphatidylcholine, and acetylcholine were measured in rat liver, heart, muscle, kidney, plasma, red blood cells, and brain and in human plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of acute obstruction to lymphatic drainage on fluid accumulation in the lungs, pleura, and pericardium was assessed in the intact dog. Catheters were positioned in the venae cavase, right atrium (RA), left atrium (LA), age on fluid accumulation in the lungs, pleura, and pericardium was assessed in the intact dog. Catheters were positioned in the venae cavae, right atrium (RA), left atrium (LA), and aorta (Ao) of nine anesthetized, spontaneouly breathing dogs, and hydrostic and colloid osmotic pressures were continuously monitored. Lymphatic obstruction was achieved by raising systemic venous pressure to either 10 mmHg or 25 mmHg by a combination of fluid infusion and inflation of balloon catheters in the venae cavae for 2 h. The same constant net intravascular filtration pressure was maintained in both groups by appropriate use of saline or colloid-containing fluids. Pleural and pericardial fluids were measured postmortem and lung water content was determined by weighing before and after drying. Failure to detect greater fluid accumulation at the higher obstructing pressure (25 mmHg) than at the lower obstructing pressure (10 mmHg) suggests that over the range of obstructing pressures used there is no acute change in the magnitude of lymphatic drainage in the chest.  相似文献   

9.
Administration of choline chloride (200 μmoles/kg) intravenously to guinea pigs caused an increase in the concentrations of choline and acetylcholine in adrenals, heart, kidneys, lungs, and liver within 2 min. These results suggest that raising the concentration of choline in plasma will accelerate the formation of acetylcholine in the organs cited. No significant increase in concentration of choline or acetylcholine occurred in brain.  相似文献   

10.
Exposure to aflatoxins causes liver fibrosis and hepatocellular carcinoma posing a significant health risk for human populations and livestock. To understand the mammalian systems responses to aflatoxin-B1 (AFB1) exposure, we analyzed the AFB1-induced metabonomic changes in multiple biological matrices (plasma, urine, and liver) of rats using (1)H NMR spectroscopy together with clinical biochemistry and histopathologic assessments. We found that AFB1 exposure caused significant elevation of glucose, amino acids, and choline metabolites (choline, phosphocholine, and glycerophosphocholine) in plasma but reduction of plasma lipids. AFB1 also induced elevation of liver lipids, amino acids (tyrosine, histidine, phenylalanine, leucine, isoleucine, and valine), choline, and nucleic acid metabolites (inosine, adenosine, and uridine) together with reduction of hepatic glycogen and glucose. AFB1 further caused decreases in urinary TCA cycle intermediates (2-oxoglutarate and citrate) and elevation of gut microbiota cometabolites (phenylacetylglycine and hippurate). These indicated that AFB1 exposure caused hepatic steatosis accompanied with widespread metabolic changes including lipid and cell membrane metabolisms, protein biosynthesis, glycolysis, TCA cycle, and gut microbiota functions. This implied that AFB1 exposure probably caused oxidative-stress-mediated impairments of mitochondria functions. These findings provide an overview of biochemical consequences of AFB1 exposure and comprehensive insights into the metabolic aspects of AFB1-induced hepatotoxicity in rats.  相似文献   

11.
The effect of an analogue of cAMP on the uptake and metabolism of choline in the heart was studied in isolated cardiac cells. The cells were obtained from 7-day-old chick embryos and maintained in culture. The effects of cAMP were studied using the dibutyryl cAMP analogue and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. After a 2-h incubation with [3H]choline, about 85% of the label was recovered in phosphocholine, with most of the rest in phospholipid. During a subsequent chase incubation, [3H]phosphocholine was transferred to phosphatidylcholine with little accumulation in CDP-choline. This suggests the rate-limiting step for the conversion of phosphocholine to phosphatidylcholine in these cells is the synthesis of CDP-choline. cAMP decreased the incorporation of choline into phosphatidylcholine, but did not change the flux of metabolites through the step catalyzed by CTP:phosphocholine cytidylyltransferase. cAMP had little effect on choline uptake at low (1-25 microM) extracellular choline concentrations, but significantly (p less than 0.05) decreased choline uptake at higher (37.5-50 microM) extracellular choline concentrations. Thus, cardiac cells take up and metabolize choline to phosphocholine, with CTP:phosphocholine cytidylyltransferase being the rate-limiting step in phosphatidylcholine biosynthesis. cAMP decreases [3H]choline uptake and its subsequent incorporation into phosphocholine and phospholipid. However, the metabolism of choline within the cell is unaffected.  相似文献   

12.
Specific antibodies to platelet activating factor (PAF) were prepared by immunizing rabbits with a hapten-bovine serum albumin (BSA) conjugate. As the hapten we used the synthetic PAF derivative which is resistant against enzymatic inactivation by plasma or tissues and which can bind to BSA through covalent bonding. Antibody activity was determined by an enzyme-linked immunosorbent assay (ELISA). Anti-PAF IgG reacted strongly with PAF. By means of the ELISA inhibition assay, we found that the antibody did not cross-react with phosphocholine, glycerophosphocholine, dilaurylglycerophosphocholine or PAF analogues which have ethanolamine-type polar head groups instead of choline group.  相似文献   

13.
Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L). In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L), which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively), with the increase through lactation positively correlated with phosphatidylcholine in plasma (R 2 = 0.78). Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk.  相似文献   

14.
This study assessed the choline status in newborns, infants, children, breast-feeding women, breast milk, infant formula, breast-fed and formula-fed infants. The serum free choline level was 35.1+/-1.1 micromol/L at birth and decreased to 24.2+/-1.6, 18.1+/-0.8, 16.3+/-0.9, 14.3+/-0.8, 12.9+/-0.6 or 10.9+/-0.6 micromol/L at 22-28, 151-180, 331-365, 571-730, 731-1095 or 4016-4380 days after birth, respectively. The serum phospholipid-bound choline level was 1997+/-75 micromol/L at birth and increased gradually to 2315+/-190 or 2572 +/-100 micromol/L at 571-730 or 4016-4380 days after birth, respectively. In breast-feeding women, serum free and phospholipid-bound choline levels were doubled at 12-28 days after birth, they decreased toward the control values with time. Free choline, phosphocholine and glycerophosphocholine were major choline compounds in breast milk. Their concentrations in mature milk were much greater than in colostrum and serum. Choline contents of breast milk varied greatly between mothers, and milk free choline levels were correlated with serum free choline (r=.541; P<.001), phospholipid-bound choline (r=.527; P<.001) and glycerophosphocholine (r=.299; P<.01) concentrations and lactating days (r=.520; P<.001). In breast-fed infants, serum free choline concentrations were correlated with free choline (r=.47; P<.001), phosphocholine (r=.345; P<.002), glycerophosphocholine (r=.311; P<.01) and total choline (r=.306; P<.01) contents of breast milk. Serum free choline concentration in formula-fed infants was lower than breast-fed infants. These data show that (a) circulating choline status is elevated during infancy and lactation, (b) choline contents of breast milk vary between mothers and milk free choline contents are influenced by maternal circulating choline status, and (c) the choline contents of breast milk can influence infants' circulating choline status.  相似文献   

15.
The superior and inferior venae cavae have been studied in 51 human being at various age, beginning from newborns using histochemical methods. After birth concentration of neural plexuses in the venae cavae increases up to the period of puberty, and then after 40years of age, certain rarefication of adrenergic and then cholinergic neural plexuses is noted. Choline- and adrenergic innervation is revealed in myocardial fibers penetrating the walls of the superior and inferior venae cavae.  相似文献   

16.
木文研究了多种氨基酸、乙醇胺和甲基乙醇胺对细胞摄取胆碱和合成磷脂酰胆碱(PC)的影响,发现多种氨基酸非竞争性地抑制细胞摄取胆碱。含胆碱代谢物的分析显示胆碱转变成CDP-胆碱,随之形成PC均不受氨基酸影响。乙醇胺竞争性地抑制胆碱摄取,且存在剂量依赖关系。乙醇胺能明显抑制胆碱激酶活性,但细胞内胆碱和磷酸胆碱的代谢池并不改变,提示乙醇胺不影响胆碱转变成磷酸胆碱。根据CDP-胆碱和PC的比放射性分布,乙醇胺也不影响PC的生物合成。甲基乙醇胺抑制胆碱摄入的程度强于乙醇胺,并抑制胆碱激酶和CTP:磷酸胆碱胞苷转移酶活性,含胆碱代谢物以CDP-胆碱下降最显著;提示甲基乙醇胺不仅抑制胆碱摄入而且还干扰了CDP-胆碱通路。  相似文献   

17.
The purpose of this study was to examine the effect of exogenous CDP-choline on choline metabolism and phosphatidylcholine biosynthesis in adult rat ventricular myocytes. Choline uptake and metabolism were examined, using [methyl3 H] choline. CDP-choline in the medium produced a concentration dependent reduction in the amount of radio-label in phosphocholine and phospholipid but it did not alter choline uptake into the myocytes. CDP-choline also did not antagonize the effect of hypoxia on phosphatidylcholine synthesis; rather it accentuated the hypoxia-induced reductions in cellular phosphocholine and phosphatidylcholine biosynthesis. These results indicate that the exogenous administration of CDP-choline alters choline metabolism in the heart by reducing the formation of phosphocholine and phosphatidylcholine without altering choline uptake and suggest an effect of a CDP-choline metabolite on choline metabolism which is not effective in opposing the effect of hypoxia on phosphatidylcholine biosynthesis.  相似文献   

18.
Choline-deficiency causes liver cells to die by apoptosis, and it has not been clear whether the effects of choline-deficiency are mediated by methyl-deficiency or by lack of choline moieties. SV40 immortalized CWSV-1 hepatocytes were cultivated in media that were choline-sufficient, choline-deficient, choline-deficient with methyl-donors (betaine or methionine), or choline-deficient with extra folate/vitamin B12. Choline-deficient CWSV-1 hepatocytes were not methyl-deficient as they had increased intracellular S-adenosylmethionine concentrations (132% of control; P < 0.01). Despite increased phosphatidylcholine synthesis via sequential methylation of phosphatidylethanolamine, choline-deficient hepatocytes had significantly decreased (P < 0.01) intracellular concentrations of choline (20% of control), phosphocholine (6% of control), glycerophosphocholine (15% of control), and phosphatidylcholine (55% of control). Methyl-supplementation in choline-deficiency enhanced intracellular methyl-group availability, but did not correct choline-deficiency induced abnormalities in either choline metabolite or phospholipid content in hepatocytes. Methyl-supplemented, choline-deficient cells died by apoptosis. In a rat study, 2 weeks of a choline-deficient diet supplemented with betaine did not prevent the occurrence of fatty liver and the increased DNA strand breakage induced by choline-deficiency. Though dietary supplementation with betaine restored hepatic betaine concentration and increased hepatic S-adenosylmethionine/S-adenosylhomocysteine ratio, it did not correct depleted choline (15% of control), phosphocholine (6% control), or phosphatidylcholine (48% of control) concentrations in deficient livers. These data show that decreased intracellular choline and/or choline metabolite concentrations, and not methyl deficiency, are associated with apoptotic death of hepatocytes. J. Cell. Biochem, 64:196–208. © 1997 Wiley-Liss, Inc.  相似文献   

19.
beta-Migrating very-low-density lipoproteins (beta-VLDL) are cholesteryl-ester-enriched lipoproteins which accumulate in the serum of cholesterol-fed animals or patients with type III hyperlipoproteinemia. In the rat, beta-VLDL are rapidly cleared by the liver and parenchymal liver cells form the major site for uptake. In this investigation, beta-VLDL were labeled with [3H]cholesteryl esters and the hepatic intracellular transport of these esters was followed. 2 min after injection, the major part of the [3H]cholesteryl esters is already associated with the liver and a significant proportion is recovered in endosomes. Up to 25 min after injection, an increase in radioactivity in the lysosomal compartment is noticed. This radioactivity initially represents cholesteryl esters, while from 25 min onward, radioactivity is mainly present in unesterified cholesterol. Between 45 min and 90 min after beta-VLDL injection, specific transfer of unesterified [3H]cholesterol to the endoplasmic reticulum is observed, while by 3 h the majority is located in this fraction. The appearance of radioactivity in the bile was rather slow as compared to the rapid initial uptake and processing, and up to 5 h after injection only 10% of the injected dose had reached the bile (mainly as bile acids). 72 h after injection, the amount of the injected radioactivity recovered in the bile had increased to 50%. Chloroquine treatment of the rats inhibited the hydrolysis of the cholesteryl esters and the appearance of radioactivity in the bile was retarded. It is concluded that beta-VLDL are rapidly processed by parenchymal liver cells and that the cholesteryl esters from beta-VLDL are hydrolyzed in the lysosomal compartment. Unesterified cholesterol remains associated with the endoplasmic reticulum for a prolonged time, although ultimately the majority will be secreted into the bile as bile acids. The effective operation of this pathway will prevent extrahepatic accumulation of cholesteryl esters from beta-VLDL, while the prolonged residence time of unesterified cholesterol in the endoplasmic reticulum might be important for regulation of low-density lipoprotein (LDL) receptors in liver and thus for LDL levels in the blood.  相似文献   

20.
Phosphatidylcholine is a major component of very low density lipoproteins (VLDLs) secreted by the liver. Hepatic phosphatidylcholine is synthesized from choline via the CDP-choline pathway and from the phosphatidylethanolamine N-methyltransferase pathway. Elimination of the methyltransferase in male mice reduces hepatic VLDL secretion. Our objective was to determine whether inhibition of the CDP-choline pathway for phosphatidylcholine synthesis (by restricting the supply of choline) also impaired VLDL secretion. In mice fed a choline-deficient (CD), compared with a choline-supplemented, diet for 21 days, the amounts of plasma apolipoproteins (apo) B100 and B48 were reduced and the liver triacylglycerol content was increased. Hepatocytes were isolated from male mice that had been fed the CD diet for 3 or 21 days, and the cells were incubated with or without choline. The secretion of apoB100 and B48 from CD hepatocytes was not reduced, and triacylglycerol secretion was only modestly decreased, compared with that from cells supplemented with choline. Remarkably, in light of widely held assumptions, the rate of phosphatidylcholine synthesis from the CDP-choline pathway was not decreased in CD hepatocytes. Rather, there was a trend toward increased phosphatidylcholine synthesis that might be explained by enhanced CTP:phosphocholine cytidylyltransferase activity. Although the concentration of phosphocholine in CD hepatocytes was reduced, the size of the phosphocholine pool remained well above the K for the cytidylyltransferase. Moreover, the amount and m activity of the cytidylyltransferase and methyltransferase were increased. The reduction in plasma apoB in mice deprived of dietary choline cannot, therefore, be attributed to decreased apoB secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号