首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Axonal degeneration is the final common path in many neurological disorders. Subsets of neuropathies involving the sensory neuron are known as hereditary sensory neuropathies (HSNs). Hereditary sensory neuropathy type I (HSN-I) is the most common subtype of HSN with autosomal dominant inheritance. It is characterized by the progressive degeneration of the dorsal root ganglion (DRG) with clinical symptom onset between the second or third decade of life. Heterozygous mutations in the serine palmitoyltransferase (SPT) long chain subunit 1 (SPTLC1) gene were identified as the pathogenic cause of HSN-I. Ultrastructural analysis of mitochondria from HSN-I patient cells has displayed unique morphological abnormalities that are clustered to the perinucleus where they are wrapped by the endoplasmic reticulum (ER). This investigation defines a small subset of proteins with major alterations in abundance in mitochondria harvested from HSN-I mutant SPTLC1 cells. Using mitochondrial protein isolates from control and patient lymphoblasts, and a combination of 2D gel electrophoresis, immunoblotting and mass spectrometry, we have shown the increased abundance of ubiquinol-cytochrome c reductase core protein 1, an electron transport chain protein, as well as the immunoglobulin, Ig kappa chain C. The regulation of these proteins may provide a new route to understanding the cellular and molecular mechanisms underlying HSN-I.  相似文献   

2.
Serine palmitoyltransferase (SPT) predominantly incorporates serine and fatty acyl-CoAs into diverse sphingolipids (SLs) that serve as structural components of membranes and signaling molecules within or amongst cells. However, SPT also uses alanine as a substrate in the contexts of low serine availability, alanine accumulation, or disease-causing mutations in hereditary sensory neuropathy type I, resulting in the synthesis and accumulation of 1-deoxysphingolipids (deoxySLs). These species promote cytotoxicity in neurons and impact diverse cellular phenotypes, including suppression of anchorage-independent cancer cell growth. While altered serine and alanine levels can promote 1-deoxySL synthesis, they impact numerous other metabolic pathways important for cancer cells. Here, we combined isotope tracing, quantitative metabolomics, and functional studies to better understand the mechanistic drivers of 1-deoxySL toxicity in cancer cells. We determined that both alanine treatment and SPTLC1C133W expression induce 1-deoxy(dihydro)ceramide synthesis and accumulation but fail to broadly impact intermediary metabolism, abundances of other lipids, or growth of adherent cells. However, we found that spheroid culture and soft agar colony formation were compromised when endogenous 1-deoxySL synthesis was induced via SPTLC1C133W expression. Consistent with these impacts on anchorage-independent cell growth, we observed that 1-deoxySL synthesis reduced plasma membrane endocytosis. These results highlight a potential role for SPT promiscuity in linking altered amino acid metabolism to plasma membrane endocytosis.  相似文献   

3.
Charcot-Marie Tooth type 2B (CMT2B) is a rare inherited peripheral neuropathy caused by five missense mutations in the RAB7A gene, which encodes a small GTPase of the RAB family. Currently, no cure is available for this disease. In this study, we approached the disease by comparing the lipid metabolism of CMT2B-derived fibroblasts to that of healthy controls. We found that CMT2B cells showed increased monounsaturated fatty acid level and increased expression of key enzymes of monounsaturated and polyunsaturated fatty acid synthesis. Moreover, in CMT2B cells a higher expression of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), key enzymes of de novo fatty acid synthesis, with a concomitantly increased [1-14C]acetate incorporation into fatty acids, was observed. The expression of diacylglycerol acyltransferase 2, a rate-limiting enzyme in triacylglycerol synthesis, as well as triacylglycerol levels were increased in CMT2B compared to control cells. In addition, as RAB7A controls lipid droplet breakdown and lipid droplet dynamics have been linked to diseases, we analyzed these organelles and showed that in CMT2B cells there is a strong accumulation of lipid droplets compared to control cells, thus reinforcing our data on abnormal lipid metabolism in CMT2B. Furthermore, we demonstrated that ACC and FAS expression levels changed upon RAB7 silencing or overexpression in HeLa cells, thus suggesting that metabolic modifications observed in CMT2B-derived fibroblasts can be, at least in part, related to RAB7 mutations.  相似文献   

4.
5.
6.
LDs (lipid droplets) carrying TAG (triacylglycerol) and cholesteryl esters are emerging as dynamic cellular organelles that are generated in nearly every cell. They play a key role in lipid and membrane homoeostasis. Abnormal LD dynamics are associated with the pathophysiology of many metabolic diseases, such as obesity, diabetes, atherosclerosis, fatty liver and even cancer. Chylomicrons, stable droplets also consisting of TAG and cholesterol are generated in the intestinal epithelium to transport exogenous (dietary) lipids after meals from the small intestine to tissues for degradation. Defective chylomicron formation is responsible for inherited lipoprotein deficiencies, including abetalipoproteinaemia, hypobetalipoproteinaemia and chylomicron retention disease. These are disorders sharing characteristics such as fat malabsorption, low levels of circulating lipids and fat-soluble vitamins, failure to thrive in early childhood, ataxic neuropathy and visual impairment. Thus understanding the molecular mechanisms governing the dynamics of LDs and chylomicrons, namely, their biogenesis, growth, maintenance and degradation, will not only clarify their molecular role, but might also provide additional indications to treatment of metabolic diseases. In this review, we highlight the role of two small GTPases [ARFRP1 (ADP-ribosylation factor related protein 1) and ARL1 (ADP-ribosylation factor-like 1)] and their downstream targets acting on the trans-Golgi (Golgins and Rab proteins) on LD and chylomicron formation.  相似文献   

7.
8.
The autosomal dominant peripheral sensory neuropathy HSAN1 results from mutations in the LCB1 subunit of serine palmitoyltransferase (SPT). Serum from patients and transgenic mice expressing a disease-causing mutation (C133W) contain elevated levels of 1-deoxysphinganine (1-deoxySa), which presumably arise from inappropriate condensation of alanine with palmitoyl-CoA. Mutant heterodimeric SPT is catalytically inactive. However, mutant heterotrimeric SPT has ∼10–20% of wild-type activity and supports growth of yeast cells lacking endogenous SPT. In addition, long chain base profiling revealed the synthesis of significantly more 1-deoxySa in yeast and mammalian cells expressing the heterotrimeric mutant enzyme than in cells expressing wild-type enzyme. Wild-type and mutant enzymes had similar affinities for serine. Surprisingly, the enzymes also had similar affinities for alanine, indicating that the major affect of the C133W mutation is to enhance activation of alanine for condensation with the acyl-CoA substrate. In vivo synthesis of 1-deoxySa by the mutant enzyme was proportional to the ratio of alanine to serine in the growth media, suggesting that this ratio can be used to modulate the relative synthesis of sphinganine and 1-deoxySa. By expressing SPT as a single-chain fusion protein to ensure stoichiometric expression of all three subunits, we showed that GADD153, a marker for endoplasmic reticulum stress, was significantly elevated in cells expressing mutant heterotrimers. GADD153 was also elevated in cells treated with 1-deoxySa. Taken together, these data indicate that the HSAN1 mutations perturb the active site of SPT resulting in a gain of function that is responsible for the HSAN1 phenotype.  相似文献   

9.
As the specific composition of lipids is essential for the maintenance of membrane integrity, enzyme function, ion channels, and membrane receptors, an alteration in lipid composition or metabolism may be one of the crucial changes occurring during skeletal and cardiac myopathies. Although the inheritance (autosomal dominant, autosomal recessive, and X-linked traits) and underlying/defining mutations causing these myopathies are known, the contribution of lipid homeostasis in the progression of these diseases needs to be established. The purpose of this review is to present the current knowledge relating to lipid changes in inherited skeletal muscle disorders, such as Duchenne/Becker muscular dystrophy, myotonic muscular dystrophy, limb-girdle myopathic dystrophies, desminopathies, rostrocaudal muscular dystrophy, and Dunnigan-type familial lipodystrophy. The lipid modifications in familial hypertrophic and dilated cardiomyopathies, as well as Barth syndrome and several other cardiac disorders associated with abnormal lipid storage, are discussed. Information on lipid alterations occurring in these myopathies will aid in the design of improved methods of screening and therapy in children and young adults with or without a family history of genetic diseases.  相似文献   

10.
11.
In BCR-ABL-expressing cells, sphingolipid metabolism is altered. Because the first step of sphingolipid biosynthesis occurs in the endoplasmic reticulum (ER), our objective was to identify ABL targets in the ER. A phosphoproteomic analysis of canine pancreatic ER microsomes identified 49 high scoring phosphotyrosine-containing peptides. These were then categorized in silico and validated in vitro. We demonstrated that the ER-resident human protein serine palmitoyltransferase long chain-1 (SPTLC1), which is the first enzyme of sphingolipid biosynthesis, is phosphorylated at Tyr164 by the tyrosine kinase ABL. Inhibition of BCR-ABL using either imatinib or shRNA-mediated silencing led to the activation of SPTLC1 and to increased apoptosis in both K562 and LAMA-84 cells. Finally, we demonstrated that mutation of Tyr164 to Phe in SPTLC1 increased serine palmitoyltransferase activity. The Y164F mutation also promoted the remodeling of cellular sphingolipid content, thereby sensitizing K562 cells to apoptosis. Our observations provide a mechanistic explanation for imatinib-mediated cell death and a novel avenue for therapeutic strategies.  相似文献   

12.
Ethambutol (EMB), widely used in the treatment of tuberculosis, has been reported to cause Leber’s hereditary optic neuropathy in patients carrying mitochondrial DNA mutations. We study the effect of EMB on mitochondrial metabolism in fibroblasts from controls and from a man carrying an OPA1 mutation, in whom the drug induced the development of autosomal dominant optic atrophy (ADOA). EMB produced a mitochondrial coupling defect together with a 25% reduction in complex IV activity. EMB induced the formation of vacuoles associated with decreased mitochondrial membrane potential and increased fragmentation of the mitochondrial network. Mitochondrial genetic variations may therefore be predisposing factors in EMB-induced ocular injury.  相似文献   

13.
Hereditary sensory and autonomic neuropathy type I (HSAN-I) is an axonal peripheral neuropathy associated with progressive distal sensory loss and severe ulcerations. Mutations in the first subunit of the enzyme serine palmitoyltransferase (SPT) have been associated with HSAN-I. The SPT enzyme catalyzes the first and rate-limiting step in the de novo sphingolipid synthesis pathway. However, different studies suggest the implication of other genes in the pathology of HSAN-I. Therefore, we screened the two other known subunits of SPT, SPTLC2 and SPTLC3, in a cohort of 78 HSAN patients. No mutations were found in SPTLC3, but we identified three heterozygous missense mutations in the SPTLC2 subunit of SPT in four families presenting with a typical HSAN-I phenotype. We demonstrate that these mutations result in a partial to complete loss of SPT activity in vitro and in vivo. Moreover, they cause the accumulation of the atypical and neurotoxic sphingoid metabolite 1-deoxy-sphinganine. Our findings extend the genetic heterogeneity in HSAN-I and enlarge the group of HSAN neuropathies associated with SPT defects. We further show that HSAN-I is consistently associated with an increased formation of the neurotoxic 1-deoxysphinganine, suggesting a common pathomechanism for HSAN-I.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting motor neurons. Although most cases of ALS are sporadic, approximately 10% are inherited as an autosomal dominant trait. Mutations in the Cu/Zn superoxide dismutase gene (SOD 1) are responsible for a fraction of familial ALS (FALS). Screening our FALS kindreds by SSCP, we have identified mutations in 15 families, of which 9 have not been previously reported. Two of the new mutations alter amino acids that have never been implicated in FALS. One of them affects a highly conserved amino acid involved in dimer contact, and the other one affects the active-site loop of the enzyme. These two mutations reduce significantly SOD 1 enzyme activity in lymphoblasts. Our results suggest that SOD 1 mutations are responsible for > or = 13% of FALS cases.  相似文献   

15.
Cytosolic lipid droplets are versatile, evolutionarily conserved organelles that are important for the storage and utilization of lipids in almost all cell types. To obtain insight into the physiological importance of lipid droplet size, we isolated and characterized a new S-adenosyl methionine synthetase 1 (SAMS-1)-deficient Caenorhabditis elegans mutant, which have enlarged lipid droplets throughout its life cycle. We found that the sams-1 mutant showed a markedly reduced body size and progeny number; impaired synthesis of phosphatidylcholine, a major membrane phospholipid; and elevated expression of key lipogenic genes, such as dgat-2, resulting in the accumulation of triacylglyceride in fewer, but larger, lipid droplets. The sams-1 mutant store more than 50 % (wild type: 10 %) of its intestinal fat in large lipid droplets, ≥10 μm3 in size. In response to starvation, SAMS-1 deficiency causes reduced depletion of a subset of lipid droplets located in the anterior intestine. Given the importance of liberation of fatty acids from lipid droplets, we propose that the physiological function of SAMS-1, a highly conserved enzyme involved in one-carbon metabolism, is the limitation of fat storage to ensure proper growth and reproduction.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0386-6) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Various types of lipids and their metabolic products associated with the biological membrane play a crucial role in signal transduction, modulation, and activation of receptors and as precursors of bioactive lipid mediators. Dysfunction in the lipid homeostasis in the brain could be a risk factor for the many types of neurodegenerative disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. These neurodegenerative disorders are marked by extensive neuronal apoptosis, gliosis, and alteration in the differentiation, proliferation, and development of neurons. Sphingomyelin, a constituent of plasma membrane, as well as its primary metabolite ceramide acts as a potential lipid second messenger molecule linked with the modulation of various cellular signaling pathways. Excessive production of reactive oxygen species associated with enhanced oxidative stress has been implicated with these molecules and involved in the regulation of a variety of different neurodegenerative and neuroinflammatory disorders. Studies have shown that alterations in the levels of plasma lipid/cholesterol concentration may result to neurodegenerative diseases. Alteration in the levels of inflammatory cytokines and mediators in the brain has also been found to be implicated in the pathophysiology of neurodegenerative diseases. Although several mechanisms involved in neuronal apoptosis have been described, the molecular mechanisms underlying the correlation between lipid metabolism and the neurological deficits are not clearly understood. In the present review, an attempt has been made to provide detailed information about the association of lipids in neurodegeneration especially in Alzheimer’s disease.  相似文献   

18.
The deregulation of brain cholesterol metabolism is typical in acute neuronal injury (such as stroke, brain trauma and epileptic seizures) and chronic neurodegenerative diseases (Alzheimer's disease). Since both conditions are characterized by excessive stimulation of glutamate receptors, we have here investigated to which extent excitatory neurotransmission plays a role in brain cholesterol homeostasis. We show that a short (30 min) stimulation of glutamatergic neurotransmission induces a small but significant loss of membrane cholesterol, which is paralleled by release to the extracellular milieu of the metabolite 24S-hydroxycholesterol. Consistent with a cause-effect relationship, knockdown of the enzyme cholesterol 24-hydroxylase (CYP46A1) prevented glutamate-mediated cholesterol loss. Functionally, the loss of cholesterol modulates the magnitude of the depolarization-evoked calcium response. Mechanistically, glutamate-induced cholesterol loss requires high levels of intracellular Ca(2+), a functional stromal interaction molecule 2 (STIM2) and mobilization of CYP46A1 towards the plasma membrane. This study underscores the key role of excitatory neurotransmission in the control of membrane lipid composition, and consequently in neuronal membrane organization and function.  相似文献   

19.
The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the dephosphorylation of PA to produce diacylglycerol, controls the bifurcation of PA into triacylglycerol synthesis and phospholipid synthesis. Pah1 is inactive in the cytosol as a phosphorylated form and becomes active on the membrane as a dephosphorylated form by the Nem1–Spo7 protein phosphatase. We show that the conserved Trp-637 residue of Pah1, located in the intrinsically disordered region, is required for normal synthesis of membrane phospholipids, sterols, triacylglycerol, and the formation of lipid droplets. Analysis of mutant Pah1-W637A showed that the tryptophan residue is involved in the phosphorylation-mediated/dephosphorylation-mediated membrane association of the enzyme and its catalytic activity. The endogenous phosphorylation of Pah1-W637A was increased at the sites of the N-terminal region but was decreased at the sites of the C-terminal region. The altered phosphorylation correlated with an increase in its membrane association. In addition, membrane-associated PA phosphatase activity in vitro was elevated in cells expressing Pah1-W637A as a result of the increased membrane association of the mutant enzyme. However, the inherent catalytic function of Pah1 was not affected by the W637A mutation. Prediction of Pah1 structure by AlphaFold shows that Trp-637 and the catalytic residues Asp-398 and Asp-400 in the haloacid dehalogenase-like domain almost lie in the same plane, suggesting that these residues are important to properly position the enzyme for substrate recognition at the membrane surface. These findings underscore the importance of Trp-637 in Pah1 regulation by phosphorylation, membrane association of the enzyme, and its function in lipid synthesis.  相似文献   

20.
The most-severe form of congenital generalized lipodystrophy (CGL) is caused by mutations in BSCL2/seipin. Seipin is a homo-oligomeric integral membrane protein in the endoplasmic reticulum that concentrates at junctions with cytoplasmic lipid droplets (LDs). While null mutations in seipin are responsible for lipodystrophy, dominant mutations cause peripheral neuropathy and other nervous system pathologies. We first review the clinical aspects of CGL and the discovery of the responsible genetic loci. The structure of seipin, its normal isoforms, and mutations found in patients are then presented. While the function of seipin is not clear, seipin gene manipulation in yeast, flies, mice, and human cells has recently yielded a trove of information that suggests roles in lipid metabolism and LD assembly and maintenance. A model is presented that attempts to bridge these new data to understand the role of this fascinating protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号