首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of transplanted patients with cyclosporin A (CSA) may cause adverse effects such as nephrotoxicity and hypertension. As CSA is known to induce oxidative stress in several tissues, it may cause vascular problems by triggering oxidative stress in endothelial cells (EC). However, oxidative stress has been reported for acute exposure to CSA concentrations exceeding its clinical range, whereas immunosuppression requires life-long treatment with therapeutic concentrations. We therefore compared the effects of 21 h pharmacological (200 microM) vs. 8 days clinical (0.5-2.5 microM) doses of CSA on cultured human EC. Pharmacological doses of CSA cause a decrease in cell density via apoptosis and a down-regulation of the antiapoptotic protein Bcl-2. However, these effects are independent of CSA-induced oxidative stress. In contrast, therapeutic concentrations of CSA cause Bcl-2 up-regulation and modification of EC morphology, both effects blocked by antioxidants. Therefore, a low level of oxidants may act in EC as second messengers that up-regulate Bcl-2, thus promoting survival of impaired EC. Our data suggest that the oxidative stress induced by clinical concentrations of CSA may be involved in the adverse effects of the drug on the vascular system of transplanted patients via an adaptive response involving Bcl-2 up-regulation rather than an apoptotic process  相似文献   

2.
The present study was conducted to examine the role of a major cardiac phospholipase C (PLC) isozyme, PLC-gamma 1, in cardiomyocytes during oxidative stress. Left ventricular cardiomyocytes were isolated by collagenase digestion from adult male Sprague-Dawley rats (250-300 g) and treated with 20, 50, and 100 microM H2O2 for 15 min. A concentration-dependent (up to 50 microM) increase in the mRNA level and membrane protein content of PLC-gamma 1 was observed with H2O2 treatment. Furthermore, PLC-gamma 1 was activated in response to H2O2, as revealed by an increase in the phosphorylation of its tyrosine residues. There was a marked increase in the phosphorylation of the antiapoptotic protein Bcl-2 by H2O2; this change was attenuated by a PLC inhibitor, U-73122. Although both protein kinase C (PKC)-delta and -epsilon protein contents were increased in the cardiomyocyte membrane fraction in response to H2O2, PKC-epsilon activation, unlike PKC-delta, was attenuated by U-73122 (2 microM). Inhibition of PKC-epsilon with inhibitory peptide (0.1 microM) prevented Bcl-2 phosphorylation. Moreover, different concentrations (0.05, 0.1, and 0.2 microM) of this peptide augmented the decrease in cardiomyocyte viability in response to H2O2. In addition, a decrease in cardiomyocyte viability, as assessed by trypan blue exclusion, due to H2O2 was also seen when cells were pretreated with U-73122 and was as a result of increased apoptosis. It is therefore suggested that PLC-gamma 1 may play a role in cardiomyocyte survival during oxidative stress via PKC-epsilon and phosphorylation of Bcl-2.  相似文献   

3.
Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells   总被引:6,自引:0,他引:6  
It has been postulated that one mechanism underlying zinc deficiency-induced tissue alterations is excessive cellular oxidative damage. In the present study we investigated if zinc deficiency can induce oxidative stress in 3T3 cells and trigger select intracellular responses that have been associated to oxidative stress. Cells were exposed to control media or to chelated media containing 0.5, 5, or 50 microM zinc for 24 or 48 h. The oxidative status of the cells was evaluated as an increase in the fluorescence of the probe 5(or 6)-carboxy-2'7'-dichlorodihydrofluorescein diacetate (DCDCDHF). After 24 and 48 h of exposure, the fluorescence intensity was significantly higher (4- to 15-fold) in the 0.5 and 5 microM Zn groups compared to the 50 microM Zn and control groups. The activity of the antioxidant enzymes CuZn (CuZnSOD) and Mn (MnSOD) superoxide dismutases was significantly higher in the 0.5 and 5 microM Zn cells compared to the 50 microM Zn and control groups at both the 24 and 48 h time points. These higher activities were associated with higher levels of MnSOD mRNA. After 24 h in culture, the level of activated AP-1 was markedly higher in the 0.5 and 5 microM Zn cells than in the control (72 and 58%, respectively) and 50 microM Zn cells (73 and 60%, respectively). NF-kappaB binding activity was lower in the 0.5 and 5 microM Zn cells than in controls. Thus, oxidative stress is induced by zinc deficiency in 3T3 cells. This oxidative stress results in an upregulation of oxidant defense mechanisms.  相似文献   

4.
Peroxisome proliferator-activated receptor gamma (PPARgamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPARgamma agonists preventbeta-amyloid (Abeta)-induced neurodegeneration in hippocampal neurons, and PPARgamma is activated by the nerve growth factor (NGF) survival pathway, suggesting a neuroprotective anti-inflammatory independent action. Here we show that the PPARgamma agonist rosiglitazone (RGZ) protects hippocampal and dorsal root ganglion neurons against Abeta-induced mitochondrial damage and NGF deprivation-induced apoptosis, respectively, and promotes PC12 cell survival. In neurons and in PC12 cells RGZ protective effects are associated with increased expression of the Bcl-2 anti-apoptotic protein. NGF-differentiated PC12 neuronal cells constitutively overexpressing PPARgamma are resistant to Abeta-induced apoptosis and morphological changes and show functionally intact mitochondria and no increase in reactive oxygen species when challenged with up to 50 microM H2O2. Conversely, cells expressing a dominant negative mutant of PPARgamma show increased Abeta-induced apoptosis and disruption of neuronal-like morphology and are highly sensitive to oxidative stress-induced impairment of mitochondrial function. Cells overexpressing PPARgamma present a 4- to 5-fold increase in Bcl-2 protein content, whereas in dominant negative PPARgamma-expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown by small interfering RNA in cells overexpressing PPARgamma results in increased sensitivity to Abeta and oxidative stress, further suggesting that Bcl-2 up-regulation mediates PPARgamma protective effects. PPARgamma prosurvival action is independent of the signal-regulated MAPK or the Akt prosurvival pathways. Altogether, these data suggest that PPARgamma supports survival in neurons in part through a mechanism involving increased expression of Bcl-2.  相似文献   

5.
The aim of this study was to explore the dose- and time-dependent effects of hydrophilic peroxyl radical initiator 2,2'azobis(2amidinopropane)dihydrochloride (AAPH) on apoptosis, and on expression of Bcl-2 in L1210 leukaemic cells. We observed a progressive increase of intracellular concentration of oxygen free radicals (OFR), manifested by the rise of 6-carboxy-2', 7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) oxidation, during 24 h of cells exposure to AAPH. Oxidative stress was associated with peroxidation of cellular lipids, which was demonstrated by the measurement of thiobarbituric acid-reactive substances and conjugated dienes. Analysis of cell viability by the use of trypan blue exclusion method revealed that AAPH reduced the ability of L1210 cells to multiply or survive. AAPH increased the number of leukaemic cells with typical features of apoptosis like condensation of chromatin, pyknosis and fragmentation of nucleus, followed by secondary necrosis. A characteristic internucleosomal DNA cleavage, visualized as a DNA ‘ladder’ consisting of fragments that are multiples of 180-200 bp was also observed. The intensity of apoptosis was dependent on AAPH concentration, time of cell exposure and the availability of growth factors and nutrients in extracellular environment (FCS concentration). The novel observation is the increase of Bcl-2 level in L1210 leukaemic cells surviving an oxidative stress. The level of Bcl-2 protein significantly rose with increasing AAPH concentration, and time of cell exposure to this oxidant. This phenomenon could be the result of: (1) negative selection of cells with the lowest expression of bcl-2, being more susceptible to oxidative stress and (2) increased synthesis and/or decreased degradation of Bcl-2 protein as an adaptation to continuous OFR loading. In contrast to growth-promoting medium (10% FCS/RPMI), the maintenance medium (2% FCS/RPMI) did not cover cell requirements for progressive Bcl-2 increase at the highest AAPH concentration (2 mM) applied in this study. Several observations indicate that the increased Bcl-2 level in surviving L1210 leukaemic cells exposed to oxidative stress is a symptom of their natural defence against cellular lipids peroxidation and apoptosis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Cyclosporin A induces closure of the mitochondrial permeability transition pore. We aimed to investigate whether this closure results in concomitant increases in mitochondrial membrane potential (DeltaPsim) and the production of reactive oxygen species. Fluorescent probes were used to assess DeltaPsim (JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide), reactive oxygen species [DCF, 5- (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester] and [Ca2+][Fluo-3, glycine N-[4-[6-[(acetyloxy)methoxy]-2,7-dichloro-3-oxo-3H-xanthen-9-yl]-2-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxyethyl]amino]-5-methylphenoxy]ethoxy]phenyl]-N-[2-[(acetyloxy)methoxy]-2-oxyethyl]-(acetyloxy)methyl ester] in human kidney cells (HK-2 cells) and in a line of human small cell carcinoma cells (GLC4 cells), because these do not express cyclosporin A-sensitive P-glycoprotein. We used transfected GLC4 cells expressing P-glycoprotein as control for GLC4 cells. NIM811 (N-methyl-4-isoleucine-cyclosporin) and PSC833 (SDZ-PSC833) were applied as selective mitochondrial permeability transition pore and P-glycoprotein blockers, respectively. To study the effect of cyclosporin A on mitochondrial function, we isolated mitochondria from fresh pig livers. Cyclosporin A and PSC833 induced a more than two-fold increase in JC-1 fluorescence in HK-2 cells, whereas NIM811 had no effect. None of the three substances induced a significant increase in JC-1 fluorescence in GLC4 cells. Despite this, cyclosporin A, NIM811 and PSC833 induced a 1.5-fold increase in DCF fluorescence (P<0.05) and a two-fold increase in Fluo-3 fluorescence (P<0.05). Studies in isolated mitochondria showed that blockage of mitochondrial permeability transition pores by cyclosporin A affected neither DeltaPsim, ATP synthesis, nor respiration rate. The mitochondrial permeability transition pore blockers cyclosporin A and NIM811, but also the non-mitochondrial permeability transition pore blocker PSC833, induced comparable degrees of reactive oxygen species production and cytosolic [Ca2+]. Neither mitochondria, effects on P-glycoprotein nor inhibition of calcineurin therefore play a role in cyclosporin A-induced oxidative stress and disturbed Ca2+ homeostasis.  相似文献   

7.
Digitonin-permeabilized PC12 and GT1-7 neural cells exhibited a cyclosporin A-sensitive decrease in mitochondrial membrane potential, increased volume, and release of the pro-apoptotic factor cytochrome c in the presence of Ca2+ and the mitochondrial permeability transition (MPT) inducers t-butyl hydroperoxide (t-bOOH) or phenylarsine oxide (PhAsO). Although the concentration of PhAsO required to induce the MPT was similar for Bcl-2 negative and Bcl-2 overexpressing transfected cells (Bcl-2(+)), the level of t-bOOH necessary for triggering the MPT was much higher for Bcl-2(+) cells. A higher concentration of t-bOOH was also necessary for promoting the oxidation of mitochondrial pyridine nucleotides in Bcl-2(+) cells. The sensitivity of Bcl-2(- ) cell mitochondria to t-bOOH but not PhAsO could be overcome by the use of conditions that protect the pyridine nucleotides against oxidation. We conclude that the increased ability of Bcl-2(+) cells to maintain mitochondrial pyridine nucleotides in a reduced redox state is a sufficient explanation for their resistance to MPT under conditions of oxidative stress induced by Ca2+ plus t-bOOH.  相似文献   

8.
Investigations into the capacity of the Bcl-2 protein to prevent apoptosis have targeted mitochondria as key sites of the preventative action accorded by Bcl-2 to cells. Using novel approaches with fluorescence probes and autofluorescence detection of endogenous NAD(P)H, we have examined the effects of expressing Bcl-2 in the Bcl-2 negative Burkitt's lymphoma cell line Daudi. We evaluated for the first time the effect of Bcl-2 expression on the intracellular distribution and production of hydrogen peroxide, under basal conditions and after treatment with apoptosis inducing agents, ceramide analogs and tumor necrosis factor (TNF)-alpha. Increased availability of mitochondrial NAD(P)H was detected in Bcl-2-expressing cells and was correlated with an increased constitutive mitochondrial production of hydrogen peroxide. Although production of hydrogen peroxide was increased by either C(6)-ceramide or TNF-alpha in Bcl-2 negative Daudi cells commensurate with the early phases of apoptosis, this increase did not occur in Bcl-2-expressing cells. Thus, Bcl-2 appears to allow cells to adapt to an increased state of oxidative stress, fortifying the cellular anti-oxidant defenses and counteracting the radical overproduction imposed by different cell death stimuli. Furthermore, we report altered cytological features of mitochondria during the early phases of apoptosis induced by C(6)-ceramide and TNF-alpha. In particular, mitochondria changed in appearance, clustering in the perinuclear region and Bcl-2 expression prevented these changes from occurring.  相似文献   

9.
The mediators nitric oxide (NO) and superoxide (O2-) are known to regulate cell death and survival. In mesangial cells (MC), NO induced apoptosis and in higher concentrations necrosis. Intriguingly, cogeneration of NO and O2- in a balanced ratio promoted cell protection. Under these conditions, we noticed the accumulation of the anti-apoptotic protein Bcl-2. Its up-regulation is based on an increase in mRNA and protein level. To investigate whether oxidative stress elicits Bcl-2 expression in general, we further used the chemically unrelated oxidative agents diamide and butyl hydroperoxide. Both stimulated mRNA and protein up-regulation of Bcl-2. But in contrast to diamide, butyl hydroperoxide evoked apoptosis and necrosis despite Bcl-2 accumulation. As diamide was non-toxic, we used diamide as a Bcl-2 activator to protect MC against a subsequent toxic dose of NO. We conclude that redox changes promote Bcl-2 up-regulation that may confer cellular protection towards apoptosis.  相似文献   

10.
We had previously shown that cyclosporin A (CsA) directly promoted the immortalization of Epstein-Barr virus (EBV)-infected human B cells (EBV-B cells) via an oxidative stress mechanism. 4-Hydroxynonenal (HNE) is a reactive end-product of lipid peroxidation. We hypothesized that HNE may mediate a direct oxidative stress-promoting effect of CsA on EBV-B cells. HNE-protein adducts in CsA-treated EBV-B cell extracts were assayed immunochemically using a Slot-Blot method. Cell proliferation was assayed by [(3)H]-thymidine incorporation. EBV oncogene latent membrane protein-1 (LMP1) expression was assayed by using PE-conjugated anti-LMP1 antibody in flow cytometry. We found that CsA at 500 ng ml(-1) and 1000 ng ml(-1) significantly increased the level of HNE-protein adducts in EBV-B cells over the control (arbitrary units +/- SE) by 251.3 +/- 7.5 to 361.3 +/- 9.7 and 342.7 +/- 10.7, respectively (p < 0.05, n = 3). EBV-B cells treated with a physiological concentration of HNE (1 microM) for 0.5 and 1 h and cultured for 2 and 4 weeks showed significantly increased [(3)H]-thymidine incorporation. EBV-B cells treated with HNE (1 microM) for 1 h and subsequently cultured for 2 and 4 weeks had a significantly higher ( > 2.0 times) LMP1-positive cell population over the control. In conclusion, in accordance with our previous findings, we show that CsA treatment of EBV-B cells results in increased production of the lipid peroxidation reactive end-product HNE that directly promotes EBV-B cell proliferation and LMP1 expression. This observation provides evidence for further understanding the mechanism of CsA-induced oxidative stress on EBV-related post-transplant lymphoproliferative disorder (PTLD).  相似文献   

11.
Several lines of evidence suggest that enhanced oxidative stress is involved in the pathogenesis and/or progression of Alzheimer's disease (AD). Amyloid beta-protein (Abeta) that composes senile plaques, a major neuropathological hallmark of AD, is considered to have a causal role in AD. Thus, we have studied the effect of oxidative stress on Abeta metabolism within the cell. Here, we report that oxidative stress induced by H(2)O(2) (100-250 microM) caused an increase in the levels of intracellular Abeta in human neuroblastoma SH-SY5Y cells. Treatment with 200 microM H(2)O(2) caused significant decreases in the protein levels of full-length beta-amyloid precursor protein (APP) and its COOH-terminal fragment that is generated by beta-cleavage, while the gene expression of APP was not altered under these conditions. A pulse-chase experiment further showed a decrease in the half-life of this amyloidogenic COOH-terminal fragment but not in that of nonamyloidogenic counterpart in the H(2)O(2)-treated cells. These results suggest that oxidative stress promotes intracellular accumulation of Abeta through enhancing the amyloidogenic pathway.  相似文献   

12.
Endothelial dysfunction is recognized as the initial detectable stage of cardiovascular disease, a serious complication of diabetes. In this study, we evaluated effects of myricetin on high glucose (HG)-elicited oxidative damage in human umbilical vein endothelial cells (HUVECs). The cells were pre-incubated with myricetin and then treated with HG to induce apoptosis. The effect of myricetin on viability was investigated by MTT assay. The levels of lipid peroxidation (LPO) were determined by thiobarbituric acid (TBA) method. The protein expression of Bax, Bcl-2 and caspase-3 was measured by western blot analysis. Moreover, the effect of myricetin on total antioxidant capacity (TAC) and total thiol molecules was also determined. Our results showed that myricetin was able to markedly restore the viability of endothelial cells under oxidative stress. Myricetin reduced HG-caused increase in LPO levels. Also, TAC and total thiol molecules were notably elevated by myricetin. Incubation with myricetin decreased the protein expression levels of Bax, whereas it increased the expression levels of the Bcl-2, compared with HG treatment alone. Furthermore, myricetin significantly decreased cleaved caspase-3 protein expression. It is concluded that myricetin may protect HUVECs from oxidative stress induced by HG via increasing cell TAC and reducing Bax/Bcl-2 protein ratio, and caspase-3 expression.  相似文献   

13.
14.
Glutathione (GSH) plays a critical role in cellular defense against unregulated oxidative stress in mammalian cells including neurons. We previously demonstrated that GSH decrease using [D, L]-buthionine sulphoximine (BSO) induces retinal cell death, but the underlying mechanisms of this are still unclear. Here, we demonstrated that retinal GSH level is closely related to retinal cell death as well as expression of an anti-apoptotic molecule, Bcl-2, in the retina. We induced differential expression of retinal GSH by single and multiple administrations of BSO, and examined retinal GSH levels and retinal cell death in vivo. Single BSO administration showed a transient decrease in the retinal GSH level, whereas multiple BSO administration showed a persistent decrease in the retinal GSH level. Retinal cell death also showed similar patterns: transient increases of retinal cell death were observed after single BSO administration, whereas persistent increases of retinal cell death were observed after multiple BSO administration. Changes in the retinal GSH level affected Bcl-2 expression in the retina. Immunoblot and immunohistochemical analyses showed that single and multiple administration of BSO induced differential expressions of Bcl-2 in the retina. Taken together, the results of our study suggest that the retinal GSH is important for the survival of retinal cells, and retinal GSH appears to be deeply related to Bcl-2 expression in the retina. Thus, alteration of Bcl-2 expression may provide a therapeutic tool for retinal degenerative diseases caused by retinal oxidative stress such as glaucoma or retinopathy.  相似文献   

15.
The human placenta provides life support for the developing foetus, and a healthy placenta is a prerequisite to a healthy start to life. Placental tissue is subject to oxidative stress which can lead to pathological conditions of pregnancy such as preeclampsia, preterm labour and intrauterine growth restriction. Up-regulation of endogenous anti-oxidants may alleviate placental oxidative stress and provide a therapy for these complications of pregnancy. In this study, selenium supplementation, as inorganic sodium selenite (NaSel) or organic selenomethionine (SeMet), was used to increase the protein production and cellular activity of the important redox active proteins glutathione peroxidase (GPx) and thioredoxin reductase (Thx-Red). Placental trophoblast cell lines, BeWo, JEG-3 and Swan-71, were cultured in various concentrations of NaSel or SeMet for 24 h and cell extracts prepared for western blots and enzyme assays. Rotenone and antimycin were used to stimulate mitochondrial reactive oxygen species (ROS) production and induce apoptosis. Trophoblast cells supplemented with 100 nM NaSel and 500 nM SeMet exhibited significantly enhanced expression and activity of both GPx and Thx-Red. Antimycin and rotenone were found to generate ROS when measured by 2′,7′-dichlorofluorescein diacetate (DCFDA) assay, and selenium supplementation was shown to reduce ROS production in a dose-dependent manner. Rotenone, 100 μM treatment for 4 h, caused trophoblast cell apoptosis as evidenced by increased Annexin V binding and decreased expression of Bcl-2. In both assays of apoptosis, selenium supplementation was able to prevent apoptosis, preserve Bcl-2 expression and protect trophoblast cells from mitochondrial oxidative stress. This data suggests that selenoproteins such as GPx and Thx-Red have an important role in protecting trophoblast cells from mitochondrial oxidative stress and that selenium supplementation may be important in treating some placental pathologies.  相似文献   

16.
Wu  Yanping  Xu  Han  Cao  Xuefang  Liu  Rongrong  Tang  Li  Zeng  Zhonghua  Li  Weifen 《Probiotics and antimicrobial proteins》2020,12(2):649-656

Probiotics have always been considered as a supplementary therapy for many diseases especially gut disorders. The absorption and barrier function of the gut play a vital role in the maintenance of body homeostasis. This study was to investigate the protective effects of Bacillus amyloliquefaciens SC06 (Ba) on H2O2-induced oxidative stress on intestinal porcine epithelial cells (IPEC-1) based on the level of gene expression. We demonstrated that Ba was a safe probiotic strain in the first place. Results showed that treatment with H2O2 significantly increased the mRNA expression of absorptive transporters glucose transporter 2 (GLUT2), Ala/Ser/Cys/Thr transporter 1 (ASCT1), and ASCT2 compared with the control group. Meanwhile, oxidative stress induced a significant improvement in the mRNA expression of occludin (OCLN) and caspase-3, and remarkably inhibited the expression of L-type amino acid transporter 1 (LAT1) or B cell lymphoma-2 (Bcl-2), respectively. Pretreatment with Ba dramatically reversed the disturbance induced by oxidative stress on the mRNA expression of ASCT1, ASCT2, and OCLN, which also significantly prevented H2O2-inhibited LAT1 and Bcl-2 mRNA expression. However, Ba failed to exert any significant protective effect on GLUT2 and caspase-3 mRNA expression. We concluded that pretreatment with Ba could alleviate the damage caused by oxidative stress to a certain extent and conferred a protective effect to the intestine.

  相似文献   

17.
Because the detailed molecular mechanisms by which oxidative stress induces apoptosis are not completely known, we investigated how the complex Bcl-2 protein network might regulate oxidative stress-induced apoptosis. Using MEFs (mouse embryonic fibroblasts), we found that the endogenous anti-apoptotic Bcl-2 protein Bcl-xL prevented apoptosis initiated by H(2)O(2). The BH3 (Bcl-2 homology 3)-only Bcl-2 protein Noxa was required for H(2)O(2)-induced cell death and was the single BH3-only Bcl-2 protein whose pro-apoptotic activity was completely antagonized by endogenous Bcl-xL. Upon H(2)O(2) treatment, Noxa mRNA displayed the greatest increase among BH3-only Bcl-2 proteins. Expression levels of the anti-apoptotic Bcl-2 protein Mcl-1 (myeloid cell leukaemia sequence 1), the primary binding target of Noxa, were reduced in H(2)O(2)-treated cells in a Noxa-dependent manner, and Mcl-1 overexpression was able to prevent H(2)O(2)-induced cell death in Bcl-xL-deficient MEF cells. Importantly, reduction of the expression of both Mcl-1 and Bcl-xL caused spontaneous cell death. These studies reveal a signalling pathway in which H(2)O(2) activates Noxa, leading to a decrease in Mcl-1 and subsequent cell death in the absence of Bcl-xL expression. The results of the present study indicate that both anti- and pro-apoptotic Bcl-2 proteins co-operate to regulate oxidative stress-induced apoptosis.  相似文献   

18.
Cigarette smoke is a mixture of chemicals having direct and/or indirect toxic effects on different lung cells. We investigated the effect of cigarette smoke on human lung fibroblasts (HFL-1) oxidation and apoptosis. Cells were exposed to various concentrations (1, 5, and 10%) of cigarette smoke extract (CSE) for 3 h, and oxidative stress and apoptosis were assessed by fluorescence-activated cell sorting and confocal laser fluorescence microscopy. Both oxidative stress and apoptosis exhibited a dose-response relationship with CSE concentrations. Lung fibroblasts also showed marked DNA fragmentation at the Comet assay after exposure to 10% CSE. Coincubation of HLF-1 cells with N-acetylcysteine (1 mM) during CSE exposure significantly reduced oxidative stress, apoptosis, and DNA fragmentation, whereas preincubation (3 h) with the glutathione-depleting agent buthionine sulfoximine (125 microM) produced a significant increase of oxidative stress. Cigarette smoke is a potent source of oxidative stress, DNA damage, and apoptosis for HFL-1 cells, and we speculate that this could contribute to the development of pulmonary emphysema in the lungs of smokers.  相似文献   

19.
20.
Bcl-2 promotes premature senescence induced by oncogenic Ras   总被引:4,自引:0,他引:4  
The expression of the apoptosis inhibitory protein, Bcl-2, is increased in naturally senescing human fibroblasts and upon induction of their senescence-like growth arrest by oxidative stress, implying its role in maintaining their extended viability. Oncogenic Ras(V12) protein induces signaling cascades that result in the premature senescence of primary fibroblast cells, which are insensitive to oncogene-dependent apoptosis. Here we show that constitutive expression of Bcl-2 accelerates selected features of the Ras-induced senescence program in primary human fibroblasts. Yet, Bcl-2 also inhibits fibroblast apoptosis induced by exogenous H(2)O(2), while both signals induce an increased endogenous Bcl-2 expression in these cells. Together, these data suggest a context-dependent phenotypic function of Bcl-2 in the regulation of overlapping cell fate specification programs, with potential implications for both physiology and multistep tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号