首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PC12 pheochromocytoma cells take up 3,4-dihydroxyphenylethylamine (dopamine) and norepinephrine by a Na+-dependent, cocaine-sensitive system. The kinetics suggest that the same transporter functions for both substrates. Xylamine, a nitrogen mustard that blocks catecholamine uptake into neurons, irreversibly inhibited norepinephrine uptake into PC12 (IC50 = 15 microM). Pretreatment with 10 microM xylamine did not inhibit norepinephrine transport if 10 microM cocaine or 100 microM norepinephrine was also present during the pretreatment period or if Na+ was absent. These results indicate that xylamine must interact with the norepinephrine transporter to inhibit norepinephrine uptake. PC12 accumulated [3H]xylamine; this uptake had Na+-dependent and Na+-independent components. The Na+-dependent uptake was saturable (Km = 13 microM), and it was inhibited by cocaine (IC50 = 0.6 microM), desipramine (IC50 less than 1 nM), and norepinephrine (IC50 = 1 microM). Several proteins became prominently labeled when intact PC12 cells were incubated with [3H]xylamine; these proteins were enriched in a plasma membrane fraction and have molecular weights of 17,000, 24,000, 31,000, 33,000, 41,000, 42,000, 52,000, and 80,000. Other proteins were labeled less prominently. The labeling of all proteins was markedly decreased when the incubation with [3H]xylamine occurred in the presence of cocaine, desipramine, gramicidin D, or in a Na+-free buffer. These results indicate that xylamine must be transported into the cells for covalent binding to proteins to occur. [3H]Xylamine labeled essentially the same proteins when incubated with cell homogenates, but competition experiments with bretylium, desipramine, and cocaine failed to reveal which of the [3H]xylamine-labeled proteins is associated with the norepinephrine transporter.  相似文献   

2.
F Solomon  M Magendantz  A Salzman 《Cell》1979,18(2):431-438
In this paper we describe a procedure for detecting proteins associated with cytoplasmic microtubules in vivo. Detergent-extracted cytoskeletons of NIL8 hamster cells are prepared under conditions which preserve the microtubules. The cytoskeletons are then extracted in the presence of calcium, which depolymerizes the microtubules and quantitatively extracted cytoskeletons are prepared from cells that have been incubated with colchicine. The cytoskeletons from these cells contain no microtubules or tubulin. Electrophoretic analysis of the calcium extracts of the colchicine-treated and untreated cells reveals several radioactively labeled polypeptides. There is, however, no apparent quantitative or qualitative difference between the two extracts other than the tubulin polypeptides. Each of the extracts is mixed with an excess of unlabeled calf brain microtubule protein and carried through cycles of temperature-dependent microtubule assembly. Distinct species from each extract co-assemble at a constant ratio, but only one polypeptide is uniquely derived from cells containing intact microtubules. The molecular weight of this polypeptide is similar to that proposed for the tau species detected in brain microtubule preparations.  相似文献   

3.
Effect of S-100 protein on assembly of brain microtubule proteins in vitro   总被引:6,自引:0,他引:6  
R Donato 《FEBS letters》1983,162(2):310-313
S-100 protein inhibits the assembly of brain microtubule proteins in vitro in the presence of 10 microM free Ca2+. The S-100 effect is generally greater on the rate than on the extent of assembly, and even greater as the microtubule protein concentration decreases and the time of preincubation between S-100 and microtubule proteins before GTP addition increases, at a given S-100/tubulin dimer molar ratio. The S-100 effect is greatly enhanced in the presence of physiological concentrations of K+ and is completely reversed by EGTA.  相似文献   

4.
Colchincine was found to be taken up by adipose tissue and therein to bind to a soluble macromolecule not sedimented by centrifugation for 2 h at 100 000 x g. A similar binding occurred when soluble extracts of adipose tissue were incubated with colchicine. The binding reaction reaction is temperature dependent and shows a pH optimum between 6.8 and 7.0. Double reciprocal plots of colchicine concentration versus amounts of colchicine bound to protein in the steady state disclosed an apparent Km of 0.250 to 1.5 muM. The colchicine binding activity of soluble tissue extracts decreased when the extracts were incubated at 37 degree C. Addition of guanosine triphosphate and Mg-2+ retarded the loss of colchicine binding activity. The molecular weight of the colchicine complex was estimated to be 115 000 and its sedimentation coefficient 5.8 S. All of these characteristics are remarkably similar to those of the protein tubulin which has been isolated from other tissues. Since it is now well known that tubulin is a protein subunit of cytoplasmic microtubules, it is suggested that the previously reported metabolic effects of colchicine on adipose tissue result from the dissolution of microtubules by colchicine.  相似文献   

5.
M Naoi  T Takahashi  T Nagatsu 《Life sciences》1988,43(18):1485-1491
1-Methyl-4-phenylpyridinium ion (MPP+), a metabolite of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, was found to reduce dopamine (DA) level and the activity of enzymes related to its metabolism in clonal rat pheochromocytoma PC12h cells. After 6 days' culture in the presence of 1 mM and 100 microM MPP+, DA content in PC12h cells was reduced markedly, but with MPP+ at concentrations lower than 10 microM, DA levels in the cells did not change. The amounts of 3,4-dihydrophenylacetic acid (DOPAC), a metabolite of DA were reduced markedly in culture medium and in PC12h cells cultured with MPP+ at concentrations higher than 1 microM. MPP+ was found to reduce the enzyme activity of tyrosine hydroxylase (TH), monoamine oxidase (MAO) and aromatic L-aminoacid decarboxylase (AADC). In the presence of MPP+ at concentrations higher than 10 microM, reduction of TH activity in the cells was more pronounced than reduction of cell protein or of the activity of a non-specific enzyme, beta-galactosidase. With 1 mM and 100 microM MPP+, MAO activity was reduced to about 30% of that in control cells. Reduction was observed with MPP+ at concentrations higher than 1 microM. AADC was the most sensitive to MPP+ and its activity was reduced markedly in the cells cultured with 100 nM MPP+. These results indicate that MPP+ inhibits not only the biosynthesis of catecholamines, but also the enzyme participating in their catabolism in cells, and may thus perturb catecholamine levels in the brain.  相似文献   

6.
We have analyzed the effect of colchicine and tubulin dimer-colchicine complex (T-C) on microtubule assembly in mitotic spindles. Cold- and calcium-labile mitotic spindles were isolated from embryos of the sea urchin Lytechinus variegatus employing EGTA/glycerol stabilization buffers. Polarization microscopy and measurements of spindle birefringent retardation (BR) were used to record the kinetics of microtubule assembly-disassembly in single spindles. When isolated spindles were perfused out of glycerol stabilizing buffer into a standard in vitro microtubule reassembly buffer (0.1 M Pipes, pH 6.8, 1 mM EGTA, 0.5 mM MgCl2, and 0.5 mM GTP) lacking glycerol, spindle BR decreased with a half-time of 120 s. Colchicine at 1 mM in this buffer had no effect on the rate of spindle microtubule disassembly. Inclusion of 20 microM tubulin or microtubule protein, purified from porcine brain, in this buffer resulted in an augmentation of spindle BR. Interestingly, in the presence of 20 microM T-C, spindle BR did not increase, but was reversibly stabilized; subsequent perfusion with reassembly buffer without T-C resulted in depolymerization. This behavior is striking in contrast to the rapid depolymerization of spindle microtubules induced by colchicine and T-C in vivo. These results support the current view that colchicine does not directly promote microtubule depolymerization. Rather, it is T-C complex that alters microtubule assembly, by reversibly binding to microtubules and inhibiting elongation. In vivo, colchicine can induce depolymerization of nonkinetochore spindle microtubules within 20 s. In vitro, colchicine blocks further microtubule assembly, but does not induce rapid disassembly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Li YF  Liu YQ  Yang M  Wang HL  Huang WC  Zhao YM  Luo ZP 《Life sciences》2004,75(13):1531-1538
High concentration of corticosterone (Cort) 0.2 mM was incubated with PC12 cells to simulate the lesion state of brain neurons in depressive illness, it was found that the inulin-type oligosaccharides extracted from Morinda officinalis, inulin-type hexasaccharide (IHS) at the doses of 0.625, 1.25 microM or desipramine (DIM) 0.25, 1 microM protected the PC12 cells from the lesion induced by Cort. With Fura-2/AM labeling assay, DIM 0.25, 1 microM or IHS 2.5, 10 microM attenuated the intracellular Ca2+ overloading induced by Cort 0.1 mM for 48 h in PC12 cells. Using RT-PCR, treatment with Cort 0.1 mM for 48 h decreased the nerve growth factor (NGF) mRNA level in PC12 cells, IHS 5, 10 microM reversed this change. In summary, IHS attenuate the intracellular Ca2+ overloading and thereby up-regulate the NGF mRNA expression in Cort-treated PC12 cells, which may be consisted at least part of the cytopretective effect of IHS. These results also extend evidence for our hypothesis that neuroprotective action is one of the common mechanisms for antidepressants.  相似文献   

8.
Human leukocyte 5-lipoxygenase (EC 1.13.11.12) is unique among the human lipoxygenase not only in its requirement for free ionized calcium, but also in its regulation by a membrane-associated stimulatory factor, the 100,000 x g pellet. In the present study, phosphatidylcholine (PC) vesicles, in the absence of 100,000 x g pellet, exhibited a dose-dependent stimulatory activity on the 5-lipoxygenase, which was at least as effective as the 100,000 x g pellet. Furthermore, the enzyme was activated by isolated human neutrophil plasma membranes and to a lesser degree by endoplasmic reticulum. The chemoattractant peptide fMet-Leu-Phe (0.1 microM), GTP (10 microM), toxin from bacterium Bordetella pertussis (islet activating protein, 5 micrograms/ml) and their various combinations were unable to modulate the enzymatic activity of the 5-lipoxygenase. Stimulation of the 5-lipoxygenase by relatively low levels of free ionized calcium was observed both in the presence of the pellet and PC vesicles: maximal stimulation was seen at about 10 microM Ca2+. The human leukocyte leukotriene A4 synthase activity also exhibited a similar requirement for free calcium ions. The present study indicates that the membrane-associated stimulatory factor of the human leukocyte 5-lipoxygenase may be replaced by PC vesicles. Moreover, the 5-lipoxygenase and leukotriene A4 synthase activities require significantly lower Ca2+ levels for maximal activation than has been reported previously.  相似文献   

9.
We have found that mitoxantrone can inhibit the polymerization of brain tubulin in a dose dependent manner. MXT had relatively high affinity for tubulin but had no appreciable effect on tubulin associated guanosine-triphosphatase (GTPase) activity nor could it compete with vinblastine (VB) and colchicine (Col) for tubulin binding sites. Furthermore, MXT (0.1-10 microM) is antiproliferative to cold-treated (0 degree C) epithelial cells after only brief exposure (30 min). These results indicated that MXT is a microtubule inhibitory agent and can exert its anticellular effect through modulation of microtubule assembly.  相似文献   

10.
Addition of Ca2+ ionophore (A23187) to the medium stimulated the Na+-independent leucine transport in Chang liver cells, increasing the cytoplasmic free Ca2+ concentration, irrespective of the presence or absence of extracellular Ca2+. Anticalmodulin drugs, such as chlorpromazine, trifluoperazine, and W-7, significantly inhibited the leucine transport in the cells. The stimulatory effect of A23187 on leucine transport was completely blocked in the presence of the anticalmodulin drug. Two microtubule disrupting drugs, colchicine and colcemid, significantly stimulated leucine transport. On the other hand, taxol, a microtubule stabilizing agent, decreased the stimulatory effect of colchicine on the leucine transport. These results strongly suggest the involvement of Ca2+ and calmodulin in regulation of Na+-independent leucine transport, possibly through control of assembly and disassembly of the microtubule network.  相似文献   

11.
Membrane events in exocytosis were studied by examining the effect of different detergents on the K+-stimulated release of noradrenaline in the secretory cell line PC 12. The nonionic detergent Triton X-100 and the cationic detergent cetyltrimethylammonium bromide (CTAB) inhibit the noradrenaline release evoked by 55 mM K+ by 50% at very low concentrations (30 microM and 10 microM, respectively). These values are tenfold lower than the critical micellar concentrations (CMC). No such effect was seen with the anionic detergent sodium dodecyl sulphate (NaDodSO4). The inhibitory effect of 30 microM Triton X-100 is reversible, and the recovery from inhibition correlates with the loss of detergent from the cells as demonstrated by binding studies using [3H]Triton X-100. The possible relationship between this inhibition of secretion and the structural properties of the detergent was investigated. The inhibition in the presence of purified Triton X-100 subfractions turned out to be a function of the length of the oligometric ethyleneglycol chain (C6 to C26). The maximal effect was observed for Triton X-100 molecules having a chain length of 16 carbon atoms, which can penetrate just half of the lipid bilayer of the membrane. Additionally, the phase transition at 13-14 degrees C observed in an Arrhenius plot of noradrenaline release in stimulated cells was abolished. In the presence of 30 microM Triton X-100, 22Na+ uptake, 86Rb+ release, and 45Ca2+ uptake were reduced by 50-60%. These data suggest that the site of action of Triton X-100 is at the level of altering the movement of ions in PC 12 cells during the stimulatory phase of secretion.  相似文献   

12.
《The Journal of cell biology》1985,101(5):1799-1807
Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a time course completely distinct from that of the tubulin induction. The increases in microtubule mass and neurite extension closely parallel 10- and 20-fold inductions of tau and MAP1, proteins shown previously to promote microtubule assembly in vitro. When NGF is removed from PC12 cells, neurites disappear, microtubule mass decreases, and both microtubule-associated proteins return to undifferentiated levels. These data suggest that the induction of tau and MAP1 in response to NGF promotes microtubule assembly and that these factors are therefore key regulators of neurite outgrowth.  相似文献   

13.
The effect of ADP on ATP-sensitive K+ channels in the insulin-secreting RINm5F cell line has been investigated with the help of single-channel current recording from saponin-permeabilized cells. ADP (100-500 microM) markedly activates K+ channels when added to the bath solution in contact with the membrane inside. ADP-beta-S cannot mimick this effect. During sustained ATP (500 microM)-evoked inhibition of K+ channel opening, 500 microM ADP markedly and reversibly activates the channels. Conversely ATP markedly reduces the opening probability of ADP-activated channels. It is suggested that the physiological control of K+ channel opening in the insulin-secreting cells is mediated by changes in ATP/ADP ratio rather than being solely determined by the ATP concentration.  相似文献   

14.
The 40 000 g supernatant and 40 000 g pellet from extracts of germinated pollen of Nicotiana alata Link et Otto contain protein kinase activity which catalyzes the phosphorylation of histones, casein and a range of endogenous polypeptides. Phosphorylation of certain low-molecular-weight, casein-derived polypeptides is activated at low (12–37 μ M ) and partially inhibited at higher (540 μ M ) concentrations of free Ca2+. Histone phosphorylation is largely Ca2+-dependent and is activated by 540 μM free Ca2+. No activation of protein phosphorylation by micromolar concentrations of calmodulin is found, but phenothiazine-derived calmodulin antagonists markedly stimulate protein phosphorylation.  相似文献   

15.
Previous in vivo studies showed that microtubules are involved in the cellular action of vasopressin. In order to analyze the role of renal medullary microtubules, a system was developed which would allow the study of the assembly of tubulin in renal medulla extracts into microtubules in vitro. The assembly of tubulin into microtubules occurred in renal medullary cytosol (100 000 times g supernatant) under specific conditions which include pre-concentration of cytosol by ultrafiltration, the presence of ethylene glycol bis(2-aminoethyl)ether tetraacetic acid (EGTA) and 4 M glycerol, and warming at 37 degrees C. Formation of microtubules, which sedimented at 100 000 times g, was proved by (a) an increase in the apparent [3H]colchicine-binding activity of depolymerized pellets, (b) appearance of typical microtubules as shown by electron microscopy, and (c) by the increase in the quantity of microtubular protein analyzed by polyacrylamide gel electrophoresis. Vinblastine at a concentrationof 10(-6) M completely blocked formation of microtubules. A slight increase of ionized calcium in the polymerization mixture also prevented microtubule assembly; this inhibitory effect of ionized calcium was present at concentrations as low as 10(-4) M. Blockade of microtubule assembly by the increase in concentration of ionized calcium or by vinblastine may be the basis of known inhibitory effect of these two agents upon the hydroosmotic effect of vasopressin in vivo.  相似文献   

16.
建立皮质酮诱导的PC12细胞损伤模型并观察木豆叶醇提物及不同组分对皮质酮损伤PC12细胞的保护作用.以100μ mol/L的皮质酮诱导PC12细胞损伤;损伤后的PC12细胞与木豆叶醇提物及不同组分孵育24h,通过形态学观察、MTT检测、LDH测定,研究各组分对皮质酮损伤PC12细胞的保护作用.结果表明,PC12细胞与皮质酮孵育48 h后细胞存活率明显降低,而LDH水平显著升高.而加入木豆叶醇提物及各组分时上述效果明显减轻,且存在明显的剂量依赖关系.从以上结果可知,木豆叶醇提物及不同组分对皮质酮损伤的PC12细胞均有保护作用,且醇提物的效果最好.  相似文献   

17.
Colchicine was found to be taken up by adipose tissue and therein to bind to a soluble macromolecule not sedimented by centrifugation for 2 h at 100 000 × g. A similar binding occurred when soluble extracts of adipose tissue were incubated with colchicine. The binding reaction is temperature dependent and shows a pH optimum between 6.8 and 7.0. Double reciprocal plots of colchicine concentration versus amounts of colchicine bound to protein in the steady state disclosed an apparent Km of 0.250 to 1.5 ωM. The colchicine binding activity of soluble tissue extracts decreased when the extracts were incubated at 37°C. Addition of guanosine triphosphate and Mg2+ retarded the loss of colchicine binding activity. The molecular weight of the colchicine complex was estimated to be 115 000 and its sedimentation coefficient 5.8 S. All of these characteristics are remarkably similar to those of the protein tubulin which has been isolated from other tissues. Since it is now well known that tubulin is a protein subunit of cytoplasmic microtubules, it is suggested that the previously reported metabolic effects of colchicine on adipose tissue result from the dissolution of microtubules by colchicine.  相似文献   

18.
Isolated centrosomes nucleate microtubules when incubated in pure tubulin solutions well below the critical concentration for spontaneous polymer assembly (approximately 15 microM instead of 60 microM). Treatment with urea (2-3 M) does not severely damage the centriole cylinders but inactivates their ability to nucleate microtubules even at high tubulin concentrations. Here we show that centrosomes inactivated by urea are functionally complemented in frog egg extracts. Centrosomes can then be reisolated on sucrose gradients and assayed in different concentrations of pure tubulin to quantify their nucleating activity. We show that the material that complements centrosomes is stored in a soluble form in the egg. Each frog egg contains enough material to complement greater than 6,000 urea-inactivated centrosomes. The material is heat inactivated above 56 degrees C. One can use this in vitro system to study how the microtubule nucleating activity of centrosomes is regulated. Native centrosomes require approximately 15 microM tubulin to begin nucleating microtubules, whereas centrosomes complemented in interphase extracts begin nucleating microtubules around 7-8 microM tubulin. Therefore, the critical tubulin concentrations for polymer assembly off native centrosomes is higher than that observed for the centrosomes first denatured and then complemented in egg extracts. In vivo, the microtubule nucleating activity of centrosomes seems to be regulated by phosphorylation at the onset of mitosis (Centonze, V. E., and G. G. Borisy. 1990. J. Cell Sci. 95:405-411). Since cyclins are major regulators of mitosis, we tested the effect of adding bacterially produced cyclins to interphase egg extracts. Both cyclin A and B activate an H1 kinase in the extracts. Cyclin A-associated kinase causes an increase in the microtubule nucleating activity of centrosomes complemented in the extract but cyclin B does not. The critical tubulin concentration for polymer assembly off centrosomes complemented in cyclin A-treated extracts is similar to that observed for centrosomes complemented in interphase extracts. However, centrosomes complemented in cyclin A treated extracts nucleate much more microtubules at high tubulin concentration. We define this as the "capacity" of centrosomes to nucleate microtubules. It seems that the microtubule nucleating activity of centrosomes can be defined by two distinct parameters: (a) the critical tubulin concentration at which they begin to nucleate microtubules and (b) their capacity to nucleate microtubules at high tubulin concentrations, the latter being modulated by phosphorylation.  相似文献   

19.
Botulinum C2 toxin is known to ADP-ribosylate actin. The toxin effect was studied on [3H]noradrenaline secretion of PC12 cells. [3H]Noradrenaline release was stimulated five- to 15-fold by carbachol (100 microM) or K+ (50 mM) and 10-30-fold by the ionophore A23187 (5 microM). Pretreatment of PC12 cells with botulinum C2 toxin for 4-8 h at 20 degrees C, increased carbachol-, K+-, and A23187-induced, but not basal, [3H]noradrenaline release maximally 1.5-to three-fold, whereas approximately 75% of the cellular actin pool was ADP-ribosylated. Treatment of PC12 cells with botulinum C2 toxin for up to 1 h at 37 degrees C also increased stimulated [3H]noradrenaline secretion, whereas toxin treatment for greater than 1 h decreased the enhanced [3H]noradrenaline release stimulated by carbachol and K+ but not by A23187. Concomitantly with toxin-induced stimulation of secretion, 20-50% of the cellular actin was ADP-ribosylated, whereas greater than 60% of actin was modified when exocytosis was attenuated. The data indicate that ADP-ribosylation of actin by botulinum C2 toxin largely modulates stimulation of [3H]noradrenaline release. Moreover, the biphasic toxin effects suggest that distinct mechanisms are involved in the role of actin in secretion.  相似文献   

20.
Maitotoxin, a Ca2+ channel activator candidate   总被引:4,自引:0,他引:4  
Effects of maitotoxin, the most potent marine toxin, were studied using a rat pheochromocytoma cell line, PC12h. A low concentration (10(-8) g/ml) of maitotoxin induced a profound increase in CA2+ influx into PC12h cells and the Ca2+-dependent release of [3H]norepinephrine from them. The effects of maitotoxin were not affected by treatment with tetrodotoxin (10(-6) M) and were observed even in the absence of external Na+. Furthermore, these effects were markedly inhibited or abolished by treatment with verapamil (30-300 microM), Mn2+ (5 mM), or tetracaine (1 mM). These results suggest that maitotoxin activates the voltage-dependent calcium channels of PC12h cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号