共查询到20条相似文献,搜索用时 0 毫秒
1.
Hoffstrom BG Kaplan A Letso R Schmid RS Turmel GJ Lo DC Stockwell BR 《Nature chemical biology》2010,6(12):900-906
A hallmark of many neurodegenerative diseases is accumulation of misfolded proteins within neurons, leading to cellular dysfunction and cell death. Although several mechanisms have been proposed to link protein misfolding to cellular toxicity, the connection remains enigmatic. Here, we report a cell death pathway involving protein disulfide isomerase (PDI), a protein chaperone that catalyzes isomerization, reduction and oxidation of disulfides. Through a small molecule screening approach, we discovered five structurally distinct compounds that prevent apoptosis induced by mutant huntingtin protein. Using modified Huisgen cycloaddition chemistry, we then identified PDI as the molecular target of these small molecules. Expression of polyglutamine-expanded huntingtin exon 1 in PC12 cells caused PDI to accumulate at mitochondrial-associated ER membranes and trigger apoptotic cell death via mitochondrial outer-membrane permeabilization. Inhibiting PDI in rat brain cells suppressed the toxicity of mutant huntingtin exon 1 and Aβ peptides processed from the amyloid precursor protein. This pro-apoptotic function of PDI represents a new mechanism linking protein misfolding and apoptotic cell death. 相似文献
2.
Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase 总被引:1,自引:0,他引:1
Pirneskoski A Klappa P Lobell M Williamson RA Byrne L Alanen HI Salo KE Kivirikko KI Freedman RB Ruddock LW 《The Journal of biological chemistry》2004,279(11):10374-10381
Disulfide bond formation in the endoplasmic reticulum of eukaryotes is catalyzed by the ubiquitously expressed enzyme protein disulfide isomerase (PDI). The effectiveness of PDI as a catalyst of native disulfide bond formation in folding polypeptides depends on the ability to catalyze disulfide-dithiol exchange, to bind non-native proteins, and to trigger conformational changes in the bound substrate, allowing access to buried cysteine residues. It is known that the b' domain of PDI provides the principal peptide binding site of PDI and that this domain is critical for catalysis of isomerization but not oxidation reactions in protein substrates. Here we use homology modeling to define more precisely the boundaries of the b' domain and show the existence of an intradomain linker between the b' and a' domains. We have expressed the recombinant b' domain thus defined; the stability and conformational properties of the recombinant product confirm the validity of the domain boundaries. We have modeled the tertiary structure of the b' domain and identified the primary substrate binding site within it. Mutations within this site, expressed both in the isolated domain and in full-length PDI, greatly reduce the binding affinity for small peptide substrates, with the greatest effect being I272W, a mutation that appears to have no structural effect. 相似文献
3.
Protein disulphide isomerase (PDI) has been isolated as a binding protein of bisphenol A (BPA) in the rat brain. In this study, we determined binding sites of BPA to PDI and characterized the binding site. First, we identified the BPA-binding domain with ab, b'a'c, a, b, b' and a'c fragment peptides of PDI by surface plasmon resonance spectroscopy. BPA interacted with ab, b'a 'c, a and b', suggesting that a and b' domains are important in their interaction. Second, ab, b'a'c, a,b,b',a', abb'a', abb', b'a', Δb' and a'c fragment peptides were used for their isomerase activity with RNase as a substrate. BPA could inhibit the activity of peptide fragments including b', suggesting that b' domain contributes to inhibition of catalytic activity of PDI by BPA. Next, we investigated the BPA-binding capacity of PDI by amino acid substitution. PDI lost the BPA-binding activity by the mutation of H258 and mutation of Q245 and N300 also decreased its activity. Furthermore, acidic condition increased the BPA-binding activity of PDI. These results suggest that the charge of these amino acid especially, H258, is important for the BPA to bind to PDI. 相似文献
4.
Tian R Li SJ Wang DL Zhao Z Liu Y He RQ 《The Journal of biological chemistry》2004,279(47):48830-48835
Protein disulfide isomerase (PDI, EC 5.3.4.1) is a chaperone and catalyzes the formation and rearrangement of disulfide bonds in proteins. Domain c-(463-491), containing 18 acidic residues, is an interesting and important C-terminal extension of PDI. In this study, the PDI mutant abb'a', in which domain c is truncated, was used to investigate the relationship between the C-terminal structure and chaperone function. Reactivation and light-scattering experiments show that both wild-type PDI and abb'a' interact with lactate dehydrogenase (LDH, EC 1.1.1.27), which tends to self-aggregate during reactivation. The interaction enhances reactivation of LDH and reduces aggregation. According to these results, it seems as if domain c might be dispensable to the chaperone function of PDI. However, abb'a' is prone to self-aggregation and causes increased aggregation of LDH during thermal denaturation. In contrast, wild-type PDI remains active as a chaperone under these conditions and prevents self-aggregation of LDH. Furthermore, measurements of intrinsic fluorescence and difference absorbance during denaturation show that abb'a' is much more labile to heat or guanidine hydrochloride denaturation than wild-type PDI. This suggests that domain c is required for the stabilization and maintenance of the chaperone function of PDI under extreme conditions. 相似文献
5.
Protein-disulfide isomerase (PDI) is an essential catalyst of disulfide formation and isomerization in the eukaryotic endoplasmic reticulum. PDI has two active sites at either end of the molecule, each containing two cysteines that facilitate thiol-disulfide exchange. In addition to its four catalytic cysteines, PDI possesses two non-active site cysteines whose location and separation distance varies by organism. In higher eukaryotes, the non-active site cysteines are located in the C-terminal half of the protein sequence and are separated by 30 amino acids. In contrast, the internal cysteines of PDI from lower eukaryotes are located near the N-terminal active site and are much closer together in sequence. The function of these cysteines and the significance of their unique location in yeast PDI have been unclear. Previous data (Xiao, R., Wilkinson, B., Solovyov, A., Winther, J. R., Holmgren, A., Lundstrom-Ljung, J., and Gilbert, H. F. (2004) J. Biol. Chem. 279, 49780-49786) suggest that the internal cysteines exist as a disulfide in the endoplasmic reticulum of Saccharomyces cerevisiae. By coupling mass spectrometry with a gel-shift technique that allows us to measure the redox potentials of the PDI active sites in the presence and absence of the non-active site cysteines, we find that the non-active site cysteines form a disulfide that is stable even in a very reducing environment and demonstrate that this disulfide exists to destabilize the N-terminal active site disulfide, making it a better oxidant by 18-fold. Consistent with this finding, we show that mutating the non-active site cysteines to alanines disrupts both the oxidase and isomerase activities of PDI in vitro. 相似文献
6.
Nuclear magnetic resonance characterization of the N-terminal thioredoxin-like domain of protein disulfide isomerase. 总被引:4,自引:2,他引:4 下载免费PDF全文
J. Kemmink N. J. Darby K. Dijkstra R. M. Scheek T. E. Creighton 《Protein science : a publication of the Protein Society》1995,4(12):2587-2593
A genetically engineered protein consisting of the 120 residues at the N-terminus of human protein disulfide isomerase (PDI) has been characterized by 1H, 13C, and 15N NMR methods. The sequence of this protein is 35% identical to Escherichia coli thioredoxin, and it has been found also to have similar patterns of secondary structure and beta-sheet topology. The results confirm that PDI is a modular, multidomain protein. The last 20 residues of the N-terminal domain of PDI are some of those that are similar to part of the estrogen receptor, yet they appear to be an intrinsic part of the thioredoxin fold. This observation makes it unlikely that any of the segments of PDI with similarities to the estrogen receptor comprise individual domains. 相似文献
7.
Kozlov G Maattanen P Schrag JD Pollock S Cygler M Nagar B Thomas DY Gehring K 《Structure (London, England : 1993)》2006,14(8):1331-1339
The synthesis of proteins in the endoplasmic reticulum (ER) is limited by the rate of correct disulfide bond formation. This process is carried out by protein disulfide isomerases, a family of ER proteins which includes general enzymes such as PDI that recognize unfolded proteins and others that are selective for specific proteins or classes. Using small-angle X-ray scattering and X-ray crystallography, we report the structure of a selective isomerase, ERp57, and its interactions with the lectin chaperone calnexin. Using isothermal titration calorimetry and NMR spectroscopy, we show that the b' domain of ERp57 binds calnexin with micromolar affinity through a conserved patch of basic residues. Disruption of this binding site by mutagenesis abrogates folding of RNase B in an in vitro assay. The relative positions of the ERp57 catalytic sites and calnexin binding site suggest that activation by calnexin is due to substrate recruitment rather than a direct stimulation of ERp57 oxidoreductase activity. 相似文献
8.
In eukaryotes, secretory proteins are folded and assembled in the endoplasmic reticulum (ER). Many heterologous proteins are retained in the ER due to suboptimal folding conditions. We previously reported that heterologous secretion of Pyrococcus furiosus beta-glucosidase in Saccharomyces cerevisiae resulted in the accumulation of a large fraction of inactive beta-glucosidase in the ER. In this work, we determine the effect of introducing additional genes of ER-resident yeast proteins, Kar2p (binding protein [BiP]) and protein disulfide isomerase (PDI), on relieving this bottleneck. Single-copy expression of BiP and PDI worked synergistically to improve secretion by reverse similar 60%. In an effort to optimize BiP and PDI interactions, we created a library of beta-glucosidase expression strains that incorporated four combinations of constitutively or inducibly-expressed BiP and PDI genes integrated to random gene copynumbers in the yeast chromosome. Approximately 15% of the transformants screened had secretion level improvements higher than that seen with single BiP/PDI gene overexpression, and the highest secreting strain had threefold higher beta-glucosidase levels than the control. Nineteen of the improved strains were re-examined for beta-glucosidase secretion as well as BiP and PDI levels. Within the improved transformants BiP and PDI levels ranged sevenfold and tenfold over the control, respectively. Interestingly, increasing BiP levels decreased beta-glucosidase secretion, whereas increasing PDI levels increased beta-glucosidase secretion. The action of PDI was unexpected because beta-glucosidase is not a disulfide-bonded protein. We suggest that PDI may be acting in a chaperone-like capacity or possibly creating mixed disulfides with the beta-glucosidase's lone cysteine residue during the folding and assembly process. 相似文献
9.
Gillece P Luz JM Lennarz WJ de La Cruz FJ Römisch K 《The Journal of cell biology》1999,147(7):1443-1456
Protein disulfide isomerase (PDI) interacts with secretory proteins, irrespective of their thiol content, late during translocation into the ER; thus, PDI may be part of the quality control machinery in the ER. We used yeast pdi1 mutants with deletions in the putative peptide binding region of the molecule to investigate its role in the recognition of misfolded secretory proteins in the ER and their export to the cytosol for degradation. Our pdi1 deletion mutants are deficient in the export of a misfolded cysteine-free secretory protein across the ER membrane to the cytosol for degradation, but ER-to-Golgi complex transport of properly folded secretory proteins is only marginally affected. We demonstrate by chemical cross-linking that PDI specifically interacts with the misfolded secretory protein and that mutant forms of PDI have a lower affinity for this protein. In the ER of the pdi1 mutants, a higher proportion of the misfolded secretory protein remains associated with BiP, and in export-deficient sec61 mutants, the misfolded secretory protein remain bounds to PDI. We conclude that the chaperone PDI is part of the quality control machinery in the ER that recognizes terminally misfolded secretory proteins and targets them to the export channel in the ER membrane. 相似文献
10.
In order to understand the functional significance of the transmembrane domain of TrwB, an integral membrane protein involved in bacterial conjugation, the protein was purified in the native, and also as a truncated soluble form (TrwBΔN70). The intact protein (TrwB) binds preferentially purine over pyrimidine nucleotides, NTPs over NDPs, and ribo- over deoxyribonucleotides. In contrast, TrwBΔN70 binds uniformly all tested nucleotides. The transmembrane domain has the general effect of making the nucleotide binding site(s) less accessible, but more selective. This is in contrast to other membrane proteins in which most of the protein mass, including the catalytic domain, is outside the membrane, but whose activity is not modified by the presence or absence of the transmembrane segment. 相似文献
11.
The acidic C-terminal domain of protein disulfide isomerase is not critical for the enzyme subunit function or for the chaperone or disulfide isomerase activities of the polypeptide. 总被引:2,自引:0,他引:2 下载免费PDF全文
P Koivunen A Pirneskoski P Karvonen J Ljung T Helaakoski H Notbohm K I Kivirikko 《The EMBO journal》1999,18(1):65-74
Protein disulfide isomerase (PDI) is a multifunctional polypeptide that acts as a subunit in the animal prolyl 4-hydroxylases and the microsomal triglyceride transfer protein, and as a chaperone that binds various peptides and assists their folding. We report here that deletion of PDI sequences corresponding to the entire C-terminal domain c, previously thought to be critical for chaperone activity, had no inhibitory effect on the assembly of recombinant prolyl 4-hydroxylase in insect cells or on the in vitro chaperone activity or disulfide isomerase activity of purified PDI. However, partially overlapping critical regions for all these functions were identified at the C-terminal end of the preceding thioredoxin-like domain a'. Point mutations introduced into this region identified several residues as critical for prolyl 4-hydroxylase assembly. Circular dichroism spectra of three mutants suggested that two of these mutations may have caused only local alterations, whereas one of them may have led to more extensive structural changes. The critical region identified here corresponds to the C-terminal alpha helix of domain a', but this is not the only critical region for any of these functions. 相似文献
12.
Renaturation of two enzymes lacking disulfide bonds, citrate synthase (CS), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and another protein containing disulfide bonds, lysozyme (LZM), were studied in order to dissect the possible chaperone function from the isomerase function of yeast protein disulfide isomerase (PDI). Our findings suggest no independent chaperone activity of yeast PDI with respect to the two enzymes lacking disulfide bonds, GAPDH and CS, since neither of these enzymes required PDI for renaturation. In contrast, a high level of renaturation of LZM was observed in the presence of PDI. Renaturation of LZM involved formation and rearrangement of disulfide bonds. Additional studies using LZM as a substrate were done to examine the role of cysteine residues in the two active sites of PDI. Studies with a series of cysteine to serine mutants and truncation mutants of yeast PDI revealed that the two active sites of PDI were not equal in activity. An intramolecular disulfide bond in at least one active site of PDI was required for the oxidation of reduced LZM. The first cysteine in each active site was necessary for disulfide bond rearrangement, i.e., isomerization, in LZM, while the second cysteine was not. 相似文献
13.
14.
Motojima F Makio T Aoki K Makino Y Kuwajima K Yoshida M 《Biochemical and biophysical research communications》2000,267(3):842-849
The GroES binding site at the apical domain of GroEL, mostly consisting of hydrophobic residues, overlaps largely with the substrate polypeptide binding site. Essential contribution of hydrophobic interaction to the binding of both GroES and polypeptide was exemplified by the mutant GroEL(L237Q) which lost the ability to bind either of them. The binding site, however, contains three hydrophilic residues, E238, T261, and N265. For GroES binding, N265 is essential since GroEL(N265A) is unable to bind GroES. E238 contributes to rapid GroES binding to GroEL because GroEL(E238A) is extremely sluggish in GroES binding. Polypeptide binding was not impaired by any mutations of E238A, T261A, and N265A. Rather, these mutants, especially GroEL(N265A), showed stronger polypeptide binding affinity than wild-type GroEL. Thus, these hydrophilic residues have a dual role; they help GroES binding on one hand but attenuate polypeptide binding on the other hand. 相似文献
15.
Neuronal tau, through its proline-rich domain and the microtubule binding domain, binds to RNA non-sequence-specifically via electrostatic interaction. This binding inhibits the activity of tau. Tau and RNA were also found to co-localize in SH-SY5Y cells suggesting that RNA has opportunities to interact with tau in cells. 相似文献
16.
Protein disulfide isomerase (PDI) is an essential protein folding assistant of the eukaryotic endoplasmic reticulum that catalyzes both the formation of disulfides during protein folding (oxidase activity) and the isomerization of disulfides that may form incorrectly (isomerase activity). Catalysis of thiol-disulfide exchange by PDI is required for cell viability in Saccharomyces cerevisiae, but there has been some uncertainty as to whether the essential role of PDI in the cell is oxidase or isomerase. We have studied the ability of PDI constructs with high oxidase activity and very low isomerase activity to complement the chromosomal deletion of PDI1 in S. cerevisiae. A single catalytic domain of yeast PDI (PDIa') has 50% of the oxidase activity but only 5% of the isomerase activity of wild-type PDI in vitro. Titrating the expression of PDI using the inducible/repressible GAL1-10 promoter shows that the amount of wild-type PDI protein needed to sustain a normal growth rate is 60% or more of the amount normally expressed from the PDI1 chromosomal location. A single catalytic domain (PDIa') is needed in molar amounts that are approximately twice as high as those required for wild-type PDI, which contains two catalytic domains. This comparison suggests that high (>60%) PDI oxidase activity is critical to yeast growth and viability, whereas less than 6% of its isomerase activity is needed. 相似文献
17.
Peptide binding by protein disulfide isomerase, a resident protein of the endoplasmic reticulum lumen 总被引:9,自引:0,他引:9
Previously we had demonstrated by photoaffinity labeling that a 57-kDa protein of the endoplasmic reticulum can bind and become covalently linked to glycosylatable photoreactive peptides containing the sequence-Asn-Xaa-Ser/Thr-. Subsequently, it was found that this protein, called glycosylation site-binding protein, was a multifunctional protein, i.e. it was identical to protein disulfide isomerase (PDI), the beta-subunit of prolyl hydroxylase and thyroid hormone-binding protein. In this study, the peptide specificity for binding to this 57-kDa protein, hereafter called PDI, has been investigated in more detail using photoaffinity probes. The results reveal that although N-glycosylation by oligosaccharyl transferase in the endoplasmic reticulum has an absolute requirement for an hydroxyamino acid in the third amino acid residue of the glycosylation site sequence, no such specificity is observed in the binding of such peptides to PDI. In addition to the lack of specificity for an hydroxyamino acid in the third residue position, no specificity was observed for the asparagine residue in the first position. Thus, binding is not restricted to peptides containing N-glycosylation sites. We have investigated the discrepancy between this apparent lack of sequence specificity and earlier results indicating that binding of peptides to PDI was specific for N-glycosylation site sequences. We now demonstrate that PDI in the lumen of microsomes is more efficiently labeled by peptides containing photoreactive-Asn-Xaa-Ser/Thr- sequences than by nonacceptor site sequences because the former become glycosylated. This increased labeling does not occur because the glycosylated form of the probes are preferentially recognized by PDI. Rather, it appears that increased polarity of the affinity probe after attachment of the oligosaccharide chain prevents its exit from the sealed microsomes, in effect concentrating it within the lumen of the microsome. These results, coupled with other studies on the multifunctional nature of PDI, suggest that the observed peptide binding may be a manifestation of the ability of PDI to recognize the backbone of polypeptides in the lumen of the endoplasmic reticulum. 相似文献
18.
M. Senissar M. C. Manav D. E. Brodersen 《Protein science : a publication of the Protein Society》2017,26(8):1474-1492
The PIN (PilT N‐terminus) domain is a compact RNA‐binding protein domain present in all domains of life. This 120‐residue domain consists of a central and parallel β sheet surrounded by α helices, which together organize 4–5 acidic residues in an active site that binds one or more divalent metal ions and in many cases has endoribonuclease activity. In bacteria and archaea, the PIN domain is primarily associated with toxin–antitoxin loci, consisting of a toxin (the PIN domain nuclease) and an antitoxin that inhibits the function of the toxin under normal growth conditions. During nutritional or antibiotic stress, the antitoxin is proteolytically degraded causing activation of the PIN domain toxin leading to a dramatic reprogramming of cellular metabolism to cope with the new situation. In eukaryotes, PIN domains are commonly found as parts of larger proteins and are involved in a range of processes involving RNA cleavage, including ribosomal RNA biogenesis and nonsense‐mediated mRNA decay. In this review, we provide a comprehensive overview of the structural characteristics of the PIN domain and compare PIN domains from all domains of life in terms of structure, active site architecture, and activity. 相似文献
19.
Protein disulfide isomerase (PDI), a luminal enzyme of the endoplasmic reticulum (ER), is thought to be involved in the process that assures that the correct disulfide bonds form as a newly synthesized protein folds into its appropriate three-dimensional structure (Freeman, 1984). In recent years, the ER has been shown to have at least two additional, distinct PDI-related luminal proteins (Bennett et al., 1988; Mazzarella et al., 1990). As a potential first step toward an investigation of the structure and function of PDI and of the PDI-related proteins as well, we have developed a bacterial expression system in Escherichia coli capable of synthesizing significant levels of enzymatically active PDI under the control of the inducible tac promoter. We have observed that the use of this bacterial expression system is complicated by the fact that there is a significant amount of internal initiation of protein synthesis within the PDI coding sequence and the fact that all of the PDI-related expression products are found equally distributed between the cytoplasmic and periplasmic fractions due to a single peptide-independent mechanism. Our studies with this system have demonstrated that at least some truncated PDI molecules containing the carboxy-terminal most active site have significant PDI activity. 相似文献
20.
T Horibe H Nagai K Sakakibara Y Hagiwara M Kikuchi 《Biochemical and biophysical research communications》2001,289(5):967-972
In the process of screening of proteins binding to ribostamycin in bovine liver using the affinity column chromatography, we found that ribostamycin inhibited the chaperone activity of protein disulfide isomerase (PDI), but it did not inhibit the isomerase activity. PDI was identified by SDS-PAGE, Western blotting, and N-terminal amino acid sequence analysis. A 100:1 molar ratio of ribostamycin to PDI was almost sufficient to completely inhibit the chaperone activity of PDI. The binding affinity of ribostamycin to purified bovine PDI was determined by the Biacore system, which gave a K(D) value of 3.19 x 10(-4) M. This suggests that ribostamycin binds to region distinct from the CGHC motif of PDI. This is the first report to describe the inhibitor of the chaperone activity of PDI. 相似文献