首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Degradation of rod outer segment proteins by cathepsin D.   总被引:1,自引:0,他引:1  
The degradation of proteins of the rod outer segment (ROS) fraction by partially purified cathepsin D [EC 3.4.23.5] from the retinal pigment epithelium was studied. The ROS fraction, prepared from bovine eyes by sucrose density gradient centrifugation, had little cathepsin D activity. Partially purified cathepsin D, obtained from crude extract of bovine retinal pigment epithelium using bovine serum albumin as a substrate, hydrolyzed the porteine of the ROS fraction. The rate of degradation of ROS proteins was proportional to both the enzyme concentration and the incubation time. With ROS proteins as substrate, the optimal pH of cathepsin D was about 3.5. The degradation of ROS proteins was inhibited by pepstatin.  相似文献   

2.
Degradation of myofibrillar proteins by cathepsins B and D   总被引:4,自引:0,他引:4       下载免费PDF全文
1. The procedure of Barrett [(1973) Biochem. J.131, 809-822] for isolating cathepsins B and D from human liver was modified for use with rat liver and skeletal muscle. The purified enzymes appeared to be similar to those reported in other species. 2. Sephadex G-75 chromatography of concentrated muscle extract resolved two peaks of cathepsin B inhibitory activity, corresponding to molecular weights of 12500 and 62000. 3. The degradation of purified myofibrillar proteins by cathepsins B and D was clearly demonstrated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. After incubation with enzyme, the polypeptide bands representing the substrates decreased in intensity and lower molecular weight products appeared. 4. Cathepsins B and D, purified from either rat liver or skeletal muscle, were shown to degrade myosin, purified from either rabbit or rat muscle. Soluble denatured myosin was degraded more extensively than insoluble native myosin. Degradation by cathepsin B was inhibited by lack of reducing agent, or by myoglobin, iodoacetic acid and leupeptin, but not by pepstatin. The same potential modifiers were applied to cathepsin D, and only pepstatin produced inhibition. 5. Rat liver cathepsin B had a pH optimum of 5.2 on native rabbit myosin. The pH optimum of cathepsin D was 4.0, with a shoulder of activity about 1pH unit above the optimum. 6. Rat liver cathepsins B and D were demonstrated to degrade rabbit F-actin at pH5.0, and were inhibited by leupeptin and pepstain, respectively. 7. The degradation of myosin and actin by cathepsin D was more extensive than that by cathepsin B.  相似文献   

3.
The dynamic of degradation of antigen (human serum albumin) by rabbit cathepsin D was studied in the presence of homologous immunoglobulin G having antibody activity to substrate (antigen) as well as without antibody activity. Both immunoglobulins possessed an inhibitory effect on the intensity of antigen degradation, however, immunoglobulin G with antibody activity had a more pronounced effect. The studies on the kinetics of inhibition showed that we were probably dealing with a special case of inhibition of the mixed type which is known as coupling or anticompetitive inhibition.  相似文献   

4.
The threonine analog beta-hydroxynorvaline is an inhibitor of asparagine-linked glycosylation. In the presence of the analog human fibroblasts synthesized cathepsin D molecules containing two, one, or no oligosaccharides. The nonglycosylated cathepsin D precursor was but a minor species and was degraded within 45 min of its synthesis, presumably in the lumen of the endoplasmic reticulum. The polypeptides with one or two oligosaccharides were normally segregated into lysosomes and their proteolytic maturation was not affected. The stability of mature glycosylated and nonglycosylated cathepsin D polypeptides within the lysosomes, however, was markedly decreased. The recovery of cathepsin D polypeptides was increased in the presence of inhibitors of cysteine and aspartyl-proteinases. These data suggest that the absence of carbohydrate side chains in cathepsin D results in an enhancement of the degradation rate of the precursor in the endoplasmic reticulum, and the replacement of threonine by beta-hydroxynorvaline in an enhanced degradation of the mature cathepsin D in lysosomes.  相似文献   

5.
《Free radical research》2013,47(9):1013-1026
Abstract

Oxidized and cross-linked modified proteins are known to accumulate in ageing. Little is known about whether the accumulation of proteins modified by advanced glycation end products (AGEs) is due to an affected intracellular degradation. Therefore, this study was designed to determine whether the intracellular enzymes cathepsin B, cathepsin D and the 20S proteasome are able to degrade AGE-modified proteins in vitro. It shows that AGE-modified albumin is degraded by cathepsin D, while cathepsin B was less effective in the degradation of aldehyde-modified albumin and the 20S proteasome was completely unable to degrade them. Mouse primary embryonic fibroblasts isolated from a cathepsin D knockout animals were found to have an extensive intracellular AGE-accumulation, mainly in lysosomes, and a reduction of AGE-modified protein degradation compared to cells isolated from wild type animals. In summary, it can be assumed that cathepsin D plays a significant role in the removal of AGE-modified proteins.  相似文献   

6.
The family of aspartic proteinases includes several human enzymes that may play roles in both physiological and pathophysiological processes. The human lysosomal aspartic proteinase cathepsin D is thought to function in the normal degradation of intracellular and endocytosed proteins but has also emerged as a prognostic indicator of breast tumor invasiveness. Presented here are results from a continuing effort to elucidate the factors that contribute to specificity of ligand binding at individual subsites within the cathepsin D active site. The synthetic peptide Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu has proven to be an excellent chromogenic substrate for cathepsin D yielding a value of kcat/Km = 0.92 x 10(-6) s-1 M-1 for enzyme isolated from human placenta. In contrast, the peptide Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu and all derivatives with Ala-Lys in the P3-P2 positions are either not cleaved at all or cleaved with extremely poor efficiency. To explore the binding requirements of the S3 and S2 subsites of cathepsin D, a series of synthetic peptides was prepared with systematic replacements at the P2 position fixing either Ile or Ala in P3. Kinetic parameters were determined using both human placenta cathepsin D and recombinant human fibroblast cathepsin D expressed in Escherichia coli. A rule-based structural model of human cathepsin D, constructed on the basis of known three-dimensional structures of other aspartic proteinases, was utilized in an effort to rationalize the observed substrate selectivity.  相似文献   

7.
The present studies were aimed to evaluate the possibility to use a system for estimation in vitro of the biosynthesis and degradation rates of human skeletal muscle protein. A previously characterized human skeletal muscle preparation was used. Amino acids and insulin stimulated significantly the incorporation rate of leucine into proteins. The effect of amino acids was more pronounced than that of insulin. The stimulatory effect of insulin could be decreased by amino acids. Insulin did not influence the tissue uptake or the oxidation rate of leucine. The release of [14C]leucine deriving from degradation of prelabelled skeletal muscle fibre proteins was linear for at least 2.5 h of incubation and optimal with leucine at concentrations beyond 12.5 mmol/1 or in the presence of puromycin in the incubation medium. The rate of the release of radioactivity was significantly inhibited by amino acids and at borderline significance by insulin but not by puromycin. The specific radioactivity in prelabelled proteins decreased significantly in the presence of puromycin suggesting that leucine derived from protein degradation was reutilized in vitro. This reutilization was found to be 9 +/- 1% of leucine released from degradation of proteins in 30 subjects. A statistically significant positive correlation between the cathepsin D activity in human skeletal muscle tissue and the degradative rate of prelabelled muscle proteins in vitro was observed. The results indicate that biosynthesis and degradation of skeletal muscle proteins in this system in vitro were subjected to control mechanisms. It is suggested that the release of radioactivity from prelabelled muscle fibre proteins during incubation probably only reflects the degradation of some rapidly-turning-over proteins.  相似文献   

8.
Summry— Adherence capacity to tissue substrate, endocytosis capacity for heterologous proteins, and proteolytic activity were determined in intestinal granulocytes (EGCs) isolated from healthy adult rainbow trout. The percentage of cells that could adhere to a smooth plastic surface increased with increasing incubation time. Endocytosis was effective for heterologous (human immunoglobulin G, IgGh; ovine somatotropin, oST) but not homologous proteins (recombinant trout somatotropin, rtST). The activity of cathepsin D increased significantly after the endocytosis of a heterologous protein. Finaly, the analysis of immunoblots of homogenates of granulocytes incubated in the presence of the two different proteins was used to show the endocytosis and degradation of heterologous proteins. These results show that isolated EGCs can endocytose and degrade heterologous proteins.  相似文献   

9.
Inorganic polyphosphate (poly P) is a polymer of phosphate residues that has been shown to act as modulator of some vertebrate cathepsins. In the egg yolk granules of Rhodnius prolixus, a cathepsin D is the main protease involved in yolk mobilization and is dependent on an activation by acid phosphatases. In this study, we showed a possible role of poly P stored inside yolk granules on the inhibition of cathepsin D and arrest of yolk mobilization during early embryogenesis of these insects. Enzymatic assays detected poly P stores inside the eggs of R. prolixus. We observed that micromolar poly P concentrations inhibited cathepsin D proteolytic activity using both synthetic peptides and homogenates of egg yolk as substrates. Poly P was a substrate for Rhodnius acid phosphatase and also a strong competitive inhibitor of a pNPPase activity. Fusion events have been suggested as important steps towards acid phosphatase transport to yolk granules. We observed that poly P levels in those compartments were reduced after in vitro fusion assays and that the remaining poly P did not have the same cathepsin D inhibition activity after fusion. Our results are consistent with the hypothesis that poly P is a cathepsin D inhibitor and a substrate for acid phosphatase inside yolk granules. It is possible that, once activated, acid phosphatase might degrade poly P, allowing cathepsin D to initiate yolk proteolysis. We, therefore, suggest that degradation of poly P might represent a new step toward yolk mobilization during embryogenesis of R. prolixus. J. Cell. Physiol. 222: 606–611, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Role of thiols in degradation of proteins by cathepsins.   总被引:2,自引:1,他引:1       下载免费PDF全文
The effects of thiols on the breakdown of 125I-labelled insulin, albumin and formaldehyde-treated albumin by highly purified rat liver cathepsins B, D, H and L at pH 4.0 and 5.5 were studied. At both pH values degradation was strongly activated by the thiols cysteamine, cysteine, dithiothreitol, glutathione and 2-mercaptoethanol, and its rate increased with increasing thiol concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect the rate of degradation by cathepsin D or L, and determination of free thiol groups after incubation of the proteins in the presence of glutathione but without cathepsin showed that their disulphide bonds were stable under the incubation conditions. Sephadex G-75 chromatography of the acid-soluble products of insulin digestion by cathepsin D or L suggested that thiols can reduce disulphide bonds in proteins after limited proteolysis. The resultant opening-up of the protein structure would lead to further proteolysis, so that the two processes (proteolysis and reduction) may act synergistically. By using the osmotic protection method it was shown that, at a physiological pH, cysteamine, and its oxidized form cystamine, can cross the lysosome membrane and thus may well be the physiological hydrogen donor for the reduction of disulphides in lysosomes. The results are discussed in relation to the lysosomal storage disease cystinosis.  相似文献   

11.
The N-terminal heparin/fibrin binding domain of human plasma fibronectin (pFN) contains a cryptic proteinase. The enzyme could be generated and activated in the presence of Ca2+ from the purified 70 kDa pFN fragment produced by cathepsin D digestion of pFN. In this work we cloned and expressed the serine proteinase, designated fibronectinase (Fnase), in E. coli. The recombinant pFN protein fragment was isolated from inclusion bodies, subjected to folding and autocatalytic degradation in the presence of Ca2+, and yielded an active enzyme capable of digesting fibronectin. Cleavage of pFN and the synthetic peptides Ac-I-E-G-K-pNA and Bz-I-E-G-R-pNA demonstrated identical specificity of the recombinant and the isolated fibronectinase. Further investigations of the substrate specificity revealed for the first time the muscle proteins actin and myosin as being substrates of fibronectinase. The enzyme can be inhibited by alpha1-proteinase inhibitor. In the context of induced cathepsin D release, e. g. from granulocytes under inflammatory conditions, these results indicate an increase in specific proteolytic potential against muscular proteins in dystrophic diseases by the release of cryptic fibronectinase.  相似文献   

12.
13.
Rabbit alveolar macrophages rapidly internalize and degrade mannosylated bovine serum albumin (125I-mannose-BSA). Trichloroacetic acid-soluble degradation products appear in the cells as early as 6 min after uptake at 37 degrees C, and in the extracellular medium after 10 min. Incubation of endocytic vesicles containing this ligand in isotonic buffers at pH 7.4 + ATP resulted in intravesicular proteolysis, which was inhibited by monensin, nigericin, or ammonium chloride. At pH 5.0, degradation proceeded rapidly and was abolished by lysis of the vesicles with 0.1% Triton X-100. Readdition of lysosomes to the incubation mixture did not increase the rate of prelysosomal degradation. Proteolysis of 125I-mannose-BSA was optimal at pH 4.5, and inhibited by low concentrations of the cathepsin D inhibitor pepstatin A. After subcellular fractionation of the macrophages on Percoll gradients, 125I-mannose-BSA sedimented with prelysosomal vesicles and was not transported to secondary lysosomes. Addition of pepstatin A to extracellular medium during internalization of prebound 125I-mannose-BSA partially inhibited degradation of ligand, and resulted in transfer of undegraded 125I-mannose-BSA to lysosomes after 20 min. Using 125I-bovine serum albumin as a substrate for the protease in the presence of 0.1% Triton X-100, we have shown that as much as 36% of the total pepstatin A-sensitive activity sediments with nonlysosomal membranes. After intraendosomal iodination using lactoperoxidase, a labeled protease was isolated by affinity chromatography on pepstatin-agarose. The labeled protease, which had a subunit size of 46 kDa, was detected in endocytic vesicles after 5 min of internalization. These results suggest that a cathepsin D-like protease is responsible for the degradation of 125I-mannose-BSA in macrophages, and that this ligand is degraded in a prelysosomal vesicle.  相似文献   

14.
In a continuing study of control processes of cerebral protein catabolism we compared the activity of cathepsin D from three sources (rat brain, bovine brain, and bovine spleen) on purified CNS proteins (tubulin, actin, calmodulin, S-100 and glial fibrillary acidic protein). The pH optimum was 5 for hydrolysis with tubulin as substrate for all three enzyme preparations, and it was pH 4 with the other substrates. The pH dependence curve was somewhat variable, with S-100 breakdown relatively more active at an acidic pH range. The formation of initial breakdown products and the further catabolism of the breakdown products was dependent on pH; hence the pattern of peptides formed from glial fibrillary acidic protein was different in incubations at different pH's. The relative activity of the enzyme preparations differed, depending on the substrate: with tubulin and S-100 as substrates, rat brain cathepsin D was the most active and the bovine spleen enzyme was the least active. With calmodulin and glial fibrillary acidic protein as substrates, rat brain and spleen cathepsin D activities were similar, and bovine brain cathepsin D showed the lowest activity. Actin breakdown fell between these two patterns.The rates of breakdown of the substrates were different; expressed as μg of substrate split per unit enzyme per h, with rat brain cathepsin D activity was 8–9 with calmodulin and S-100, 4 with glial fibrillary acidic protein, 1.8 with actin, and 0.9 with tubulin. The results show that there are differences in the properties of a protease like cathepsin D, depending on its source; furthermore, the rate of breakdown and the characteristics of breakdown are also dependent on the substrate.We recently measured the breakdown of brain tubulin by cerebral cathepsin D in a continuing study of the mechanisms and controls of cerebral protein catabolism (Bracco et al., 1982a). We found that tubulin breakdown is heterogeneous, that membrane-bound tubulin is resistant to cathepsin D but susceptible to thrombin (Bracco et al., 1982b), and that cytoplasmic tubulin was in at least two pools, one with a higher, another with a lower, rate of breakdown. The pH optimum of tubulin breakdown by cerebral cathepsin D differed significantly from the pH optimum of hemoglobin breakdown by the same enzyme.These findings showed that the properties of breakdown by a cerebral protease depend on the substrate. To further examine this dependence of properties of breakdown on the substrate, we now report measurements of pH dependence of breakdown of several purified proteins (tubulin, actin, calmodulin, S-100, glial fibrillary acidic protein [GFA]) from brain by cathepsin D preparations from three sources, rat brain, bovine brain, and bovine spleen. We also compare the rate of breakdown of the various proteins with the rate of hemoglobin breakdown.  相似文献   

15.
The degradation of native albumin by human spleen cathepsin D was inhibited by GSH, cysteine and cysteamine. The thiols existing physiologically also inhibited reduced-carboxymethylated albumin, indicating that these thiols react preferentially with the enzyme itself rather than the substrate. The inhibitions of native albumin proteolysis were dose-dependent. These effects of thiols which have not been observed in other animal cathepsin D, suggest an essential function for cathepsin D in the human spleen.  相似文献   

16.
Some physicochemical properties of the cathepsin D purified from the rabbit muscle (L. dorsi) were investigated.

The sedimentation coefficient (s20,w) and the molecular weight determined from sedimentation equilibrium experiment was 3.83 S and 29,000~30,000, respectively.

The amino acid composition of the enzyme was determined with an automatic amino acid analyzer.

The proteolytic specificity of the enzyme was also investigated using the B-chain of oxidized beef insulin as the substrate. The cathepsin D cleaved the bonds Phe-Val, Ala-Leu, Leu-Tyr and Tyr-Leu. The specificity of the cathepsin D was fairly similar to that of the pepsin.  相似文献   

17.
Brefeldin A (BFA) has been shown to inhibit transiently the subcellular transport of cathepsin D (Oda & Nishimura (1989) Biochem. Biophys. Res. Commun. 163, 220-225). We studied the effect of this antibiotic on processing of the phosphorylated oligosaccharides in cathepsin D in human promonocytes U937. In the presence of the drug the phosphorylation of cathepsin D precursor continued at a diminished rate. The phosphorylated oligosaccharides in cathepsin D comprised mono- and bis-phosphorylated forms. The relative amounts of the two species were not changed in the presence of BFA. The uncovering of the phosphate groups and the proteolytic processing of the phosphorylated precursor were abolished. In an in vitro assay the uncovering enzyme, N-acetylglucosamine-1-phosphodiester N-acetylglucosaminidase was not inhibited by BFA. We suggest that this drug interrupts the traffic between the compartments containing N-acetylglucosaminyl phosphotransferase and N-acetylglucosamine-1-phosphodiester N-acetylglucosaminidase.  相似文献   

18.
The Mannose 6-phosphate receptor (MPR’s) proteins are important for transporting lysosomal enzymes from trans-golgi to the pre-lysosomal compartment. These are conserved in the vertebrates from fish to mammals. We have cloned the full length cDNA for the goat MPR 46 protein and compared its sequences to the other known vertebrate MPR 46 proteins. In the present study the full-length cDNA for the goat MPR 46 protein was expressed in MPR deficient cells. The expressed protein was purified on the multivalent phosphomannan gel in the presence of divalent metal ions. The apparent molecular mass of the expressed protein was found to be ∼46 kDa and also exhibits oligomeric nature as observed in the other species, by using an MSC1 antibody (that recognizes the MPR 46 from molluscs to mammals) as well as with a peptide specific antibody corresponding to amino acid residues (218–237) of the cytoplasmic tail of human MPR 46 protein. Furthermore the distribution of the expressed protein was visualized by immunofluorescence using MSC1 and LAMP1 antibody. Additionally in the goat MPR 46 expressing cells, the sorting function of the expressed protein to sort cathepsin D to lysosomes was studied by confocal microscopy using cathepsin D antiserum and LAMP1 antibody. The binding of goat MPR 46 to cathepsin D was shown in far Western blotting and the mannose 6-phosphate dependent binding was shown by co-immunoprecipitation.  相似文献   

19.
20.
We determined whether recombinant human growth hormone (rhGH) administration might modulate the enzyme degradative capacity of the muscle lysosomal system and influence muscle growth. Muscle cathepsin D, acid RNase and DNase II activities are determined in the gastrocnemius muscle of rhGH-treated post-weaning female BALB/c mice. Linear regressions were used to analyze the relationships of each enzyme with their respective substrate. GH induced a depletion-recovery response of muscle growth through a mechanism which is similar to catch-up growth. In these conditions, cathepsin D activity decreased with age in all animals (GH: 40%; saline: 79%), showing a substantial developmental decline that could reflect changes in the rate of protein breakdown. However, the degradative capacity of cathepsin D was paradoxically unmodified in rhGH-mice compared with saline mice (according to the enzyme vs. substrate linear regression slope), in spite of the increase in enzyme activity elicited by GH. This suggests that the muscle protein breakdown is not increased by GH-treatment in post-weaning mice. The enhancement of muscle protein deposition as indicated by the augmented muscle cell size (protein:DNA ratio) of rhGH-mice (increased 178% from 25 to 50 days) vs. saline, can be attributed to a higher muscle K(RNA). In contrast, acid RNase and DNase II activities directly participate in muscle RNA and DNA degradation. Both nucleases were inhibited by GH treatment (a decrease of 48% and 63%, respectively, vs. saline at 50 days). The decrease in RNase activity suggests an inverse relation between the rate of protein synthesis (high) and acid RNase activity (low), leading to spare muscle RNA for synthesizing protein during catch-up growth. Also, low DNase II activity could contribute to inhibiting of muscle DNA degradation, facilitating muscle growth. Thus, GH seems to act as a direct modulator of the degradative capacity of skeletal muscle nucleases but not of cathepsin D, influencing DNA and RNA degradation during the depletion-recovery response to GH of gastrocnemius muscle in female post-weaning mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号