首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
RNA extracts obtained from environmental samples are frequently contaminated with coextracted humic substances and DNA. It was demonstrated that the response in rRNA-targeted oligonucleotide probe hybridizations decreased as the concentrations of humic substances and DNA in RNA extracts increased. The decrease in hybridization signal in the presence of humic substances appeared to be due to saturation of the hybridization membrane with humic substances, resulting in a lower amount of target rRNA bound to the membrane. The decrease in hybridization response in the presence of low amounts of DNA may be the result of reduced rRNA target accessibility. The presence of high amounts of DNA in RNA extracts resulted in membrane saturation. Consistent with the observations for DNA contamination, the addition of poly(A) to RNA extracts, a common practice used to prepare RNA dilutions for membrane blotting, also reduced hybridization signals, likely because of reduced target accessibility and membrane saturation effects.  相似文献   

2.
DNA extracts from sediment and water samples are often contaminated with coextracted humic-like impurities. Estuarine humic substances and vascular plant extract were used to evaluate the effect of the presence of such impurities on DNA hybridization and quantification. The presence of humic substances and vascular plant extract interfered with the fluorometric measurement of DNA concentration using Hoechst dye H33258 and PicoGreen reagent. Quantification of DNA amended with humic substances (20-80 ng/microl) using the Hoechst dye assay was more reliable than with PicoGreen reagent. A simple procedure was developed to improve the accuracy for determining the DNA concentration in the presence of humic substances. In samples containing up to 80 ng/microl of humic acids, the fluorescence of the samples were measured twice: first without Hoechst dye to ascertain any fluorescence from impurities in the DNA sample, followed with Hoechst dye addition to obtain the total sample fluorescence. The fluorescence of the Hoechst dye-DNA complex was calculated by subtracting the fluorescence of the impurities from the fluorescence of the sample. Vascular plant extract and humic substances reduced the binding of DNA onto the nylon membrane. Low amounts (<2.0 microg) of humic substances derived from estuarine waters did not affect the binding of 100 ng of target DNA to nylon membranes. DNA samples containing 1.0 microg of humic substances performed well in DNA hybridizations with DIG-labeled oliogonucleotide and chromosomal probes. Therefore, we suggest that DNA samples containing low concentrations of humic substances (<20 ng/microl) could be used in quantitative membrane hybridization without further purification.  相似文献   

3.
In fluorescent in situ hybridization (FISH), the efficiency of hybridization between the DNA probe and the rRNA has been related to the accessibility of the rRNA when ribosome content and cell permeability are not limiting. Published rRNA accessibility maps show that probe brightness is sensitive to the organism being hybridized and the exact location of the target site and, hence, it is highly unpredictable based on accessibility only. In this study, a model of FISH based on the thermodynamics of nucleic acid hybridization was developed. The model provides a mechanistic approach to calculate the affinity of the probe to the target site, which is defined as the overall Gibbs free energy change (DeltaG degrees overall) for a reaction scheme involving the DNA-rRNA and intramolecular DNA and rRNA interactions that take place during FISH. Probe data sets for the published accessibility maps and experiments targeting localized regions in the 16S rRNA of Escherichia coli were used to demonstrate that DeltaG degrees overall is a strong predictor of hybridization efficiency and superior to conventional estimates based on the dissociation temperature of the DNA/rRNA duplex. The use of the proposed model also allowed the development of mechanistic approaches to increase probe brightness, even in seemingly inaccessible regions of the 16S rRNA. Finally, a threshold DeltaG degrees overall of -13.0 kcal/mol was proposed as a goal in the design of FISH probes to maximize hybridization efficiency without compromising specificity.  相似文献   

4.
DNA and peptide nucleic acid (PNA) molecular beacons were successfully used to detect rRNA in solution. In addition, PNA molecular beacon hybridizations were found to be useful for the quantification of rRNA: hybridization signals increased in a linear fashion with the 16S rRNA concentrations used in this experiment (between 0.39 and 25 nM) in the presence of 50 nM PNA MB. DNA and PNA molecular beacons were successfully used to detect whole cells in fluorescence in situ hybridization (FISH) experiments without a wash step. The FISH results with the PNA molecular beacons were superior to those with the DNA molecular beacons: the hybridization kinetics were much faster, the signal-to-noise ratio was much higher, and the specificity was much better for the PNA molecular beacons. Finally, it was demonstrated that the combination of the use of PNA molecular beacons in FISH and flow cytometry makes it possible to rapidly collect quantitative FISH data. Thus, PNA molecular beacons might provide a solution for limitations of traditional FISH methods, such as variable target site accessibility, poor sensitivity for target cells with low rRNA content, background fluorescence, and applications of FISH in microfluidic devices.  相似文献   

5.
DNA and peptide nucleic acid (PNA) molecular beacons were successfully used to detect rRNA in solution. In addition, PNA molecular beacon hybridizations were found to be useful for the quantification of rRNA: hybridization signals increased in a linear fashion with the 16S rRNA concentrations used in this experiment (between 0.39 and 25 nM) in the presence of 50 nM PNA MB. DNA and PNA molecular beacons were successfully used to detect whole cells in fluorescence in situ hybridization (FISH) experiments without a wash step. The FISH results with the PNA molecular beacons were superior to those with the DNA molecular beacons: the hybridization kinetics were much faster, the signal-to-noise ratio was much higher, and the specificity was much better for the PNA molecular beacons. Finally, it was demonstrated that the combination of the use of PNA molecular beacons in FISH and flow cytometry makes it possible to rapidly collect quantitative FISH data. Thus, PNA molecular beacons might provide a solution for limitations of traditional FISH methods, such as variable target site accessibility, poor sensitivity for target cells with low rRNA content, background fluorescence, and applications of FISH in microfluidic devices.  相似文献   

6.
From analyses of the hybridization of Escherichia coli rRNA (ribosomal RNA) to homologous denatured DNA, the following conclusions were drawn. (1) When a fixed amount of DNA was hybridized with increasing amounts of RNA, only 0.35+/-0.02% of E. coli DNA was capable of binding (16s+23s) rRNA. Although preparations of 16s and 23s rRNA were virtually free from cross-contamination, the hybridization curves for purified 16s or 23s rRNA were almost identical with that of the parent specimen containing 1 weight unit of 16s rRNA mixed with 2 weight units of 23s rRNA. The 16s and 23s rRNA also competed effectively for the same specific DNA sites. It appears that these RNA species each possess all hybridizing species typical of the parent (16s+23s) rRNA specimen, though probably in different relative amounts. (2) By using hybridization-efficiency analysis of DNA-RNA hybridization curves (Avery & Midgley, 1969) it was found that (a) 0.45% of the DNA would hybridize total rRNA and (b) when so little RNA was added to unit weight of DNA that the DNA sites were not saturated, only 70-75% of the input RNA would form hybrids. The reasons for the discrepancy between the results obtained by the two alternative analytical approaches were discussed. (3) For either 16s or 23s rRNA, hybridization analysis indicated that two principal weight fractions of rRNA may exist, hybridizing to two distinct groups of DNA sites. However, these groups seem to be incompletely divided between the 16s and 23s fractions. Analysis suggested that (a) 85% of the 16s rRNA was hybridized to about half the DNA that specifically binds rRNA (0.23% of the total DNA). (b) 70% of the 23s rRNA hybridized to a further 0.23% of the DNA and (c) the minor fraction (15%) of 16s rRNA may be competitive with the major fraction (70%) of 23s rRNA. Conversely, the minor fraction (30%) of the 23s rRNA may compete with the major fraction (85%) of 16s rRNA. Models were proposed to explain the apparent lack of segregation of distinct RNA species in the two subfractions of rRNA. (4) If protein synthesis and ribosome maturation were inhibited in cells of an RC(rel) mutant, E. coli W 1665, by depriving them of an amino acid (methionine) essential for growth, the inhibition had no discernible effect on the relative rates of synthesis of rRNA species. The rRNA that accumulates in RC(rel) strains of E. coli after amino acid deprivation is apparently identical in its content of RNA species with that of the pre-existing mature RNA in the ribosomes. On the other hand, the messenger RNA is stabilized, and accumulates as about 15% of the RNA formed after withdrawal of the amino acid.  相似文献   

7.
The accessibility of specific sequences in domain V of E. coli 23s rRNA in the 50S subunit to complementary oligodeoxyribonucleotides (cDNA) has been investigated. The apparent percentage of subunits engaged in complex formation was determined by incubation of radiolabeled cDNA probe with 50S subunits, followed by nitrocellulose membrane filtration of the reaction mixtures and measurement of the bound radiolabeled cDNA probes by liquid scintillation counting of the filters. The site(s) of hybridization were determined by digestion of the RNA in the RNA/DNA heteroduplex by RNase H. The results of this study indicated that single-stranded sequences, 2058-2062, 2448-2454, 2467-2483, and 2497-2505 were available for hybridization to cDNA probes. Bases 2489-2496, which have been postulated to be base paired with 2455-2461 were also accessible for hybridization.  相似文献   

8.
A method in which the polymerase chain reaction (PCR) was used was developed to amplify either a uidA gene fragment or a 16S rRNA gene fragment from Escherichia coli in sewage and sludge. Because of interference caused by humic acidlike substances, crude DNA extracts were purified with a Sephadex G-200 spun column before the PCR was begun. A Southern analysis in which a nonradioactive chemiluminescent method was used was performed to confirm the presence of PCR products. The sensitivity of detection for PCR products when the chemiluminescent method was used was determined to be 30 ag of E. coli genomic DNA template. In seeded sludge, the PCR amplified the target DNA from 80 E. coli cells per g of sludge and 50 Shigella dysenteriae cells per g of sludge. Because only 0.05 aliquot of a sludge extract was used for the PCR, we deduced that the PCR detected target DNA equivalent to the DNA of 2.5 to 4 cells in the extract. The PCR amplified the uidA fragment from diluted sewage influents and effluents containing E. coli cells. Therefore, the PCR performed with a chemiluminescent gene probe can be used to detect the presence of potentially pathogenic microorganisms in sewage and sludge. This technique can be expanded to permit direct detection of pathogenic microorganisms in water samples, thus leading to enhanced public health protection.  相似文献   

9.
In fluorescent in situ hybridization (FISH), the efficiency of hybridization between the DNA probe and the rRNA has been related to the accessibility of the rRNA when ribosome content and cell permeability are not limiting. Published rRNA accessibility maps show that probe brightness is sensitive to the organism being hybridized and the exact location of the target site and, hence, it is highly unpredictable based on accessibility only. In this study, a model of FISH based on the thermodynamics of nucleic acid hybridization was developed. The model provides a mechanistic approach to calculate the affinity of the probe to the target site, which is defined as the overall Gibbs free energy change (ΔG°overall) for a reaction scheme involving the DNA-rRNA and intramolecular DNA and rRNA interactions that take place during FISH. Probe data sets for the published accessibility maps and experiments targeting localized regions in the 16S rRNA of Escherichia coli were used to demonstrate that ΔG°overall is a strong predictor of hybridization efficiency and superior to conventional estimates based on the dissociation temperature of the DNA/rRNA duplex. The use of the proposed model also allowed the development of mechanistic approaches to increase probe brightness, even in seemingly inaccessible regions of the 16S rRNA. Finally, a threshold ΔG°overall of −13.0 kcal/mol was proposed as a goal in the design of FISH probes to maximize hybridization efficiency without compromising specificity.  相似文献   

10.
11.
The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.  相似文献   

12.
13.
14.
Ribosomal RNA (rRNA) and engineered stable artificial RNAs (aRNAs) are frequently used to monitor bacteria in complex ecosystems. In this work, we describe a solid-phase immunocapture hybridization assay that can be used with low molecular weight RNA targets. A biotinylated DNA probe is efficiently hybridized in solution with the target RNA, and the DNA-RNA hybrids are captured on streptavidin-coated plates and quantified using a DNA-RNA heteroduplex-specific antibody conjugated to alkaline phosphatase. The assay was shown to be specific for both 5S rRNA and low molecular weight (LMW) artificial RNAs and highly sensitive, allowing detection of as little as 5.2 ng (0.15 pmol) in the case of 5S rRNA. Target RNAs were readily detected even in the presence of excess nontarget RNA. Detection using DNA probes as small as 17 bases targeting a repetitive artificial RNA sequence in an engineered RNA was more efficient than the detection of a unique sequence.  相似文献   

15.
In this report we used Northern blot hybridization analysis to characterize the fate of several species of viral RNA transcribed from internal and terminal regions of vaccinia DNA in interferon-treated, infected mouse L cells grown in suspension. All species of viral RNAs were expressed but were reduced in amount. Larger-sized RNAs were reduced more than smaller-sized RNAs. This reduction appears to be related to the activation of the interferon-mediated double-stranded RNA-dependent 2-5A synthetase-endoribonuclease system, as the rRNA cleavage pattern characteristic of this system was observed early in infection and in cell extracts in response to exogenous 2-5A. Thus, in interferon-treated, vaccinia-infected mouse L cells in suspension, there is indiscriminate degradation of viral and cellular RNAs, and this RNA breakdown might play a role in the interferon-mediated inhibition of protein synthesis.  相似文献   

16.
17.
A technique is described to identify the rare sequences within an RNA molecule that are available for efficient interaction with complementary DNA probes: the target RNA is digested by RNase H in the presence of a random pool of complementary DNA fragments generated from the same DNA preparation that was used for target RNA synthesis. The DNA region was amplified by PCR, partially digested with DNase and denatured prior to RNA binding. In the presence of single-stranded DNA fragments the RNA was digested with RNase H such that, on average, each molecule was cut once. Cleavage sites were detected by gel electrophoresis either directly with end-labeled RNA or by primer extension. The pattern of accessible sites on c- raf mRNA was determined and compared with the known profile of activity of oligonucleotides found in cells, showing the merit of the method for predicting oligonucleotides which are efficient for in vivo antisense targeting. New susceptible sites in the 3'-untranslated region of c- raf mRNA were identified. Also, four RNAs were probed to ascertain to what extent structure predicts accessibility: the P4-P6 domain of the Tetrahymena group I intron, yeast tRNAAsp, Escherichia coli tmRNA and a part of rat 18S rRNA.  相似文献   

18.
DNA microarray technology offers the possibility to analyze microbial communities without cultivation, thus benefiting biodiversity studies. We developed a DNA phylochip to assess phytoplankton diversity and transferred 18S rRNA probes from dot blot or fluorescent in situ hybridization (FISH) analyses to a microarray format. Similar studies with 16S rRNA probes have been done determined that in order to achieve a signal on the microarray, the 16S rRNA molecule had to be fragmented, or PCR amplicons had to be <150 bp in length to minimize the formation of a secondary structure in the molecule so that the probe could bind to the target site. We found different results with the 18S rRNA molecule. Four out of 12 FISH probes exhibited false-negative signals on the microarray; eight exhibited strong but variable signals using full-length 18S RNA molecules. A systematic investigation of the probe's accessibility to the 18S rRNA gene was made using Prymenisum parvum as the target. Fourteen additional probes identical to this target covered the regions not tested with existing FISH probes. Probes with a binding site in the first 900 bp of the gene generated positive signals. Six out of nine probes binding in the last 900 bp of the gene produced no signal. Our results suggest that although secondary structure affected probe binding, the effect is not the same for the 18S rRNA gene and the 16S rRNA gene. For the 16S rRNA gene, the secondary structure is stronger in the first half of the molecule, whereas in the 18S rRNA gene, the last half of the molecule is critical. Probe-binding sites within 18S rRNA gene molecules are important for the probe design for DNA phylochips because signal intensity appears to be correlated with the secondary structure at the binding site in this molecule. If probes are designed from the first half of the 18S rRNA molecule, then full-length 18S rRNA molecules can be used in the hybridization on the chip, avoiding the fragmentation and the necessity for the short PCR amplicons that are associated with using the 16S rRNA molecule. Thus, the 18S rRNA molecule is a more attractive molecule for use in environmental studies where some level of quantification is desired. Target size was a minor problem, whereas for 16S rRNA molecules target size rather than probe site was important.  相似文献   

19.
1. Measurements of hybridization with homologous DNA were used to assess the nature of the RNA synthesized during hormone action in several systems. 2. When increasing amounts of pulse-labelled rat liver nuclear RNA were annealed with constant amounts of DNA, saturation was not achieved even with RNA/DNA ratios of up to 180:1, which is taken to indicate great diversity in the species of labelled RNA molecules. In the converse experiment, when the DNA/RNA ratio was varied up to 20:1, a plateau of hybridization was observed, and the non-hybridizing RNA is believed to represent chiefly ribosomal and ribosomal precursor species. 3. In the livers of hypophysectomized and thyroidectomized rats treated with growth hormone and tri-iodothyronine, and in whole Xenopus larvae during induced metamorphosis, the synthesis of non-hybridizing RNA was consistently stimulated more than that of hybridizing RNA. This is interpreted as reflecting preferential synthesis of ribosomal RNA in response to these hormones.  相似文献   

20.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号