首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of phosphomonoester (PME), phosphodiester (PDE), ATP and pH in brain cells of chicken embryos rotated for 24 h in a clinostat during the period of hatching the 13th day (E13) and 15th day (E15) embryos were investigated by using 31P-NMR spectroscopy. Significant increases in the values of PME, ATP and pH were identified after E13 rotating for 24 h. With the same treatment, differences were obtained in the phospholipid and energy metabolism of E15, but no significant levels have been reached . The calorimetric assay (malachite green method) was used for measuring the activity of total ATPase. A dramatic decrease was evident in the activity of ATPase in brain cells of rotated E13 and E15. The former is more sensitive than the latter. All the levels mentioned above could restore in 24 h after the rotation stopped, except that the level of ATP was still higher than the control.  相似文献   

2.
Levels of phosphomonoester (PME), phosphodiester (PDE), ATP and pH in brain cells of chicken embryos rotated for 24 h in a clinostat during the period of hatching the 13th day (E13) and 15th day (E15) embryos were investigated by using31P-NMR spectroscopy. Significant increases in the values of PME, ATP and pH were identified after E13 rotating for 24 h. With the same treatment, differences were obtained in the phospholipid and energy metabolism of E15, but no significant levels have been reached. The calorimetric assay (malachite green method) was used for measuring the activity of total ATPase. A dramatic decrease was evident in the activity of ATPase in brain cells of rotated E13 and E15. The former is more sensitive than the latter. All the levels mentioned above could restore in 24 h after the rotation stopped, except that the level of ATP was still higher than the control.  相似文献   

3.
用回转器旋转鸡胚蛋研究对脑细胞的模拟微重力生物效应.采用连续荧光法测量孵化10 d(E10)和孵化13 d(E13)鸡胚的脑细胞谷氨酸的初始释放速率、在KCl去极化及单个电脉冲刺激后的释放速率和释放量以及谷氨酸的含量,并对旋转处理组和静止对照组进行了比较.结果如下:旋转组和对照组脑细胞的谷氨酸初始释放速率没有显著差异,E10鸡胚经24 h旋转后,在KCl刺激下脑细胞的谷氨酸释放速率和释放量皆高于对照组,经4 h旋转后谷氨酸含量显著增高(P<0.01);但旋转24 h的E13鸡胚上述指标皆无显著改变,表明微重力对鸡胚脑细胞神经递质释放的影响与胚龄有关.鸡胚脑细胞在电脉冲刺激下谷氨酸释放的动态过程表明:脉冲电场引起的谷氨酸释放与细胞内钙离子迅速增加有关.  相似文献   

4.
K J Chacko 《Acta anatomica》1977,97(4):379-386
Timed pregnancies were obtained in Sprague-Dawley rats, and cardiac tissues from embryos of days 10, 11, 12, 13, 14 and from newborn rats were used for the cytochemical localization of ATPase activity utilizing a lead phosphate precipitation procedure. Following incubation with ATP as the substrate, granular deposits of reaction product are discernible on the cell membranes of the embryonic myocardium. There is a noticeable decrease in the intensity of reaction product as visualized in the electron micrographs from the 10th day of gestation to the 14th day. No granular reaction product is recognizable in myofibrils, mitochondria or other organelles in the cytoplasm. It appears that there is a selective deposition of the reaction product on the cell membranes or structures derived from it. The intense ATPase activity seen on 10th and 11th days seems to be correlated with the initial appearance of myofilaments and fibrils in the myocardial cells.  相似文献   

5.
The effects of the acute and chronic administration of a pure opioid antagonist--naltrexone--was studied in chick embryos from the 4th to the 19th day of incubation. In acute administration, naltrexone (40 mg/kg egg weight) induced paroxysmal activation of spontaneous motility in both normal and spinal embryos from the 13th-15th day of incubation. Activation attained 3- to 4-fold the resting activity of chick embryos of the same ages. The chronic administration of naltrexone (7.46 +/- 1.18 mg/kg e.w. per 24 h) from the 4th to the 16th day of incubation was not manifested either in the embryos' somatic development or in the weight of the brain hemispheres, but it depressed the development of spontaneous motility to 26.1-75.8% of the activity of the control embryos. This developmental effect was not demonstrably correlated either to the length of time for which naltrexone was administered, or to when, in the course of incubation, it was administered to the chick embryos. The results are evaluated as evidence of the participation of opioid elements in the development and effectuation of central motor input functions in the early stages of ontogenetic development.  相似文献   

6.
In vivo (31)P nuclear magnetic resonance spectroscopy (NMR) was used to determine phosphometabolite changes in medaka (Oryzias latipes) during embryogenesis and hypoxia. NMR data were acquired using a flow-through NMR tube perfusion system designed to both deliver oxygenated water to embryos and accommodate a hypoxic challenge. Measurements of embryogenesis at 12- and 24-h intervals throughout 8 days of development (n = 3 per time point, 900 embryos per replicate) and during acute hypoxia (n = 6, 900 embryos at Iwamatsu stage 37 per replicate) were performed via NMR, and replicate samples (n = 4, 250 embryos each) were flash frozen for HPLC analysis. The hypoxic challenge experiment consisted of data acquisition with recirculating water (pre-hypoxic control period; 1 h), without recirculating water (hypoxic challenge; 1 h), then again with recirculating water (recovery period; 1.3 h). Concentrations of ATP, phosphocreatine (PCr), orthophosphate (P(i)), phosphomonoesters (PME), phosphodiesters (PDE), and intracellular pH (pH(i)) were determined by NMR, and ATP, ADP, AMP, GTP, GDP, and PCr were also determined via HPLC. During embryogenesis, [ATP] and [PCr] as determined by HPLC increased from 1-day post fertilization (DPF) levels of 0.93+/-0.08 and 2.48+/-0.21 micromol/mg (dry tissue), respectively, to 7.24+/-0.77 and 15.66+/-1.08 micromol/mg, respectively, by day 8. [ATP] and [PCr] measured by both NMR and HPLC fluctuated over 1-3 DPF, then increased significantly (p<0.05) over 3-8 DPF, while [PME] and [PDE] decreased (p<0.05) throughout embryogenesis. NMR and HPLC measurements revealed 1-3, 4-5, and 6-8 DPF as periods of embryogenesis significantly different from each other (p<0.05), and representing important transitions in metabolism and growth. During hypoxic challenge, [ATP] and [PCr] declined (p<0.05), [PME] and [PDE] decreased slightly, and [P(i)] increased (p<0.05). All phosphometabolites returned to pre-hypoxia concentrations during recovery. The pH(i) decreased (p<0.05) from 7.10+/-0.03 to 6.94+/-0.03 as a result of hypoxia, and failed to return to pre-hypoxic levels within the 1.3-h recovery phase. Results demonstrate the utility of in vivo (31)P NMR to detect significant alterations in phosphorylated nucleotides and phosphometabolites at specific developmental stages during medaka development and that late-stage medaka utilize PCr to generate ATP under hypoxic conditions.  相似文献   

7.

Background

Karwinskia humboldtiana (Kh) is a poisonous plant of the rhamnacea family. To elucidate some of the subcellular effects of Kh toxicity, membrane fluidity and ATPase activities as hydrolytic and as proton-pumping activity were assessed in rat liver submitochondrial particles. Rats were randomly assigned into control non-treated group and groups that received 1, 1.5 and 2 g/Kg body weight of dry powder of Kh fruit, respectively. Rats were euthanized at day 1 and 7 after treatment.

Results

Rats under Kh treatment at all dose levels tested, does not developed any neurologic symptoms. However, we detected alterations in membrane fluidity and ATPase activity. Lower dose of Kh on day 1 after treatment induced higher mitochondrial membrane fluidity than control group. This change was strongly correlated with increased ATPase activity and pH gradient driven by ATP hydrolysis. On the other hand, membrane fluidity was hardly affected on day 7 after treatment with Kh. Surprisingly, the pH gradient driven by ATPase activity was significantly higher than controls despite an diminution of the hydrolytic activity of ATPase.

Conclusions

The changes in ATPase activity and pH gradient driven by ATPase activity suggest an adaptive condition whereby the fluidity of the membrane is altered.  相似文献   

8.
The development of the physicochemical properties of the cerebrospinal fluid (CSF) was studied in chick embryos from the 9th day of incubation up to hatching. Some of these properties were compared with the corresponding blood or blood plasma properties. During the second half of incubation the CSF pressure rose from 13.2 plus or minus 0.18 mm H2O in 9-day-old embryos to 80.7 plus or minus 0.48 mm H2O just prior to hatching. The critical stages of this development were the 13th to 15th and the 19th to 21st day of incubation. In 13- and 15-day-old embryos, CSF pressure fell sharply after the intracerebral injection of ouabain, but in 19-day embryos it was unaffected. Except for the 15th and 19th incubation day, the CSF pH was always lower than the plasma pH. From the 11th day of incubation up to hatching, the CSF pH fell from 7.36 plus or minus 0.002 to 7.2 plus or minus 0.005. On the 11th and 13th day, specific CSF resistance was higher than plasma resistance, whereas from the 17th incubation day it was significantly lower than the plasma value. During the second half of incubation, specific CSF resistance fell from 1.059 times 10(6) to 0.824 times 10(6) omega mm.m(-1). A difference between the D.C. potential of the venous blood and the CSF appeared for the first time in 15-day-old embryos, the CSF being negative in relation to the blood. By the end of the incubation period this potential difference rose to 10.82 times 0.07 mv.  相似文献   

9.
In this work, we describe the ability of living cells of Entamoeba histolytica to hydrolyze extracellular ATP. In these intact parasites, whose viability was determined by motility and by the eosin method, ATP hydrolysis was low in the absence of any divalent metal (78 nmol P(i)/h/10(5) cells). Interestingly, in the presence of 5 mM MgCl(2) an ecto-ATPase activity of 300 nmol P(i)/h/10(5) cells was observed. The addition of MgCl(2) to the extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 1.23 mM MgCl(2). Both activities were linear with cell density and with time for at least 1 h. The ecto-ATPase activity was also stimulated by MnCl(2) and CaCl(2) but not by SrCl(2), ZnCl(2), or FeCl(3). In fact, FeCl(3) inhibited both Mg(2+)-dependent and Mg(2+)-independent ecto-ATPase activities. The Mg(2+)-independent ATPase activity was unaffected by pH in the range between 6.4 and 8. 4, in which the cells were viable. However, the Mg(2+)-dependent ATPase activity was enhanced concomitantly with the increase in pH. In order to discard the possibility that the ATP hydrolysis observed was due to phosphatase or 5'-nucleotidase activities, several inhibitors for these enzymes were tested. Sodium orthovanadate, sodium fluoride, levamizole, and ammonium molybdate had no effect on the ATPase activities. In the absence of Mg(2+) (basal activity), the apparent K(m) for ATP(4-) was 0.053 +/- 0.008 mM, whereas at saturating MgCl(2) concentrations, the corresponding apparent K(m) for Mg-ATP(2-) for Mg(2+)-dependent ecto-ATPase activity (difference between total and basal ecto-ATPase activity) was 0.503 mM +/- 0.062. Both ecto-ATPase activities were highly specific for ATP and were also able to hydrolyze ADP less efficiently. To identify the observed hydrolytic activities as those of an ecto-ATPase, we used suramin, a competitive antagonist of P(2) purinoreceptors and an inhibitor of some ecto-ATPases, as well as the impermeant agent 4'-4'-diisothiocyanostylbenzene-2'-2'-disulfonic acid. These two reagents inhibited the Mg(2+)-independent and the Mg(2+)-dependent ATPase activities to different extents, and the inhibition by both agents was prevented by ATP. A comparison among the ecto-ATPase activities of three amoeba species showed that the noninvasive E. histolytica and the free-living E. moshkovskii were less efficient than the pathogenic E. histolytica in hydrolyzing ATP. As E. histolytica is known to have a galactose-specific lectin on its surface, which is related to the pathogenesis of amebiasis, galactose was tested for an effect on ecto-ATPase activities. It stimulated the Mg(2+)-dependent ecto-ATPase but not the Mg(2+)-independent ATPase activity.  相似文献   

10.
The purpose of this study was to examine the effects of lactate, protons, inorganic phosphate, and ATP on myofibrillar ATPase activity. Myofibrils were isolated from carp (Cyprinius carpio L.) fast-twitch white muscle, and myofibrillar ATPase activities were assessed under maximal activating calcium levels (pCa 4.0) at 10 degrees C in reaction media containing metabolic profiles similar to those seen in fatiguing muscles. The Ca(2+)-activated ATPase activity was assessed by an ATP regenerating assay that coupled the myofibrillar ATPase to pyruvate kinase and lactate dehydrogenase. This assay allowed the effects of ATP, inorganic phosphate, protons, and lactate on myofibrillar ATPase activity to be assessed. The coupled assay was found to give similar myofibrillar ATPase kinetics, with the exception of higher maximal activities, to those seen with a standard end-point assay. Myofibrillar ATPase activity was depressed by 35% when ATP concentrations were lowered to 2.5 mM. Lowering ATP levels to 0.5 mM reduced the myofibrillar ATPase activities by 85%. Lactate had no effect on myofibrillar ATPase activities. Inorganic phosphate levels up to about 20 mM significantly decreased the myofibrillar ATPase activities, after which further increases in inorganic phosphate content had minimal effects. The changes in ATPase activities were related to total inorganic phosphate, not to the content of diprotonated inorganic phosphate. Myofibrillar ATPase activity was highest at pH 7.5 and lowest at pH 6.0. The interactive effects of low ATP, decreased pH, and high inorganic phosphate levels were not additive, giving similar decreases in activity to those produced by increased inorganic phosphate levels alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of corticosterone on the cholinergic enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) were studied in the chick embryonic brain. Chick embryos received either 0.25, 0.5, or 1.0 g of corticosterone via the air sac daily for three days during either embryonic days 6 through 8 (E6-E8), of cerebral neurogenesis, or days 10 through 12 (E10-E12), a period of cerebellar neurogenesis. Enzyme activities were determined in cerebral hemispheres, optic lobes, cerebellum and remaining brain at 10, 15, and 20 days of incubation. In embryos treated from E6 to E8, ChAT activity was generally higher at day 10 in cerebral hemispheres and optic lobes (cerebellum was not determined) while AChE activity was not affected. At day 20 ChAT activity of treated chick embryos was lower in the cerebral hemispheres and optic lobes, but not in the cerebellum; AChE activity was higher in the cerebral hemispheres, lower in the optic lobes, and not changed in the cerebellum as compared to controls. However, in embryos treated from E10 to E12 both cerebellar ChAT and AChE activities were higher at day 15 in comparison to controls. These data show that the hormonal effects were most prominent only in the brain areas undergoing neurogenesis during the period of hormonal treatment. Since AChE activity is also present in nonneuronal cells, the observed alterations caused by corticosterone may reflect glial cell responses to the hormone. Whether the hormone affects the final number and/or maturation of cholinergic neurons and/or glial cells remain to be investigated.  相似文献   

12.
Summary In renal tubular epithelial cells, oxidant injury results in several metabolic alterations including ATP depletion, decreased Na+K+ ATPase activity, and altered intracellular sodium and potassium content. To investigate the recovery of LLC-PK1 cells following oxidant injury and to determine if recovery can be accelerated, we induced oxidant stress in LLC-PK1 cells with 500 μM hydrogen peroxide for 60 min. Identical cohorts of oxidant-stressed cells were incubated in recovery medium without epidermal growth factor (EGF) or recovery medium containing 25 ng EGF per ml. ATP levels, Na+K+ ATPase activity in whole cells, Na+K+ ATPase activity in disrupted cells, and intracellular sodium and potassium ion content were determined at 0, 5, 24, 48, and 72 h following oxidant injury in each cohort of cells. In oxidant-stressed cells recovering in medium without EGF, ATP levels, Na+K+ ATPase activity, and intracellular ion content improved but continued to remain substantially lower than control values at all time points following oxidant stress. In cells recovering in medium with EGF, ATP levels, Na+K+ ATPase activity, and the intracellular potassium-to-sodium ratio were significantly higher at nearly all time points than values in cells recovering in medium alone. In cells recovering with added EGF, Na+K+ ATPase activity had improved to control levels, whereas ATP levels and intracellular ion content approached control values by 72 h following oxidant stress. We conclude that oxidant-mediated ATP depletion, altered Na+K+ ATPase activity, and intracellular ion content remain depressed for several d following oxidant stress and that EGF accelerated recovery of LLC-PK1 cells from oxidant injury.  相似文献   

13.
朱晓梦 《蛇志》2011,23(2):114-116
目的 观察大鼠急性颅脑损伤后脑组织ATP酶活性及肿瘤坏死因子-α(TNF-α)的变化,探讨急性颅脑损伤后脑水肿的发病机制.方法 将72只SD大鼠随机分为正常组(N组)、假手术对照组(S组)、急性颅脑损伤模型组(ACI组),其中S组和ACI组于造模后分为2、6、24、72 h时间点,每个时间点8只大鼠;取大鼠伤灶区脑组织测定Na+-K+-ATP酶和Ca2+-ATP酶活性、TNF-α含量及脑组织含水量.结果 急性颅脑损伤后脑组织Na+-K+-ATP酶、Ca2+-ATP酶活性降低(P〈0.05),TNF-α含量升高(P〈0.05);颅脑损伤后24 h脑水肿较严重.相关性分析提示,Ca2+-ATP酶活性与TNF-α含量呈负相关(P〈0.05).结论 急性颅脑损伤后可引起脑组织ATP酶活性降低、TNF-α含量增加,两者可能协同参与了急性颅脑损伤后脑水肿.  相似文献   

14.
The acute and chronic effect of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) on spontaneous motor activity and its development was studied in chick embryos. 1. From the 13th day of incubation, the acute effect of MPTP (30 mg/kg e.w., up to 60 min after administration) consisted in significant depression of spontaneous motility. From the 17th day, the effect of MPTP in supraspinal compartments of the CNS also began to participate in this depression. 2. The subacute effect of MPTP (up to 24 h after a single dose) was lethal for 11-day-old embryos. Conversely, in older embryos resting motility partly recovered, with signs of an inverse correlation to the embryo's age. The final effect, however, consisted in absolute failure of the hatching process 3. The chronic effect of MPTP (3.57 mg/kg e.w./24 h, from the 4th to the 16th day of incubation) led to a developmental reduction of spontaneous motor activity, chiefly from the 8th to 12th day of incubation. 4. The interaction of nialamide (25 mg/kg e.w.), a blocker of monoaminooxidase produced disparate results with the effect of MPTP in young and old embryos.  相似文献   

15.
To study the differentiation of adrenergic (epinephrine-synthesizing) neurons in brain, the initial appearance and ontogeny of phenylethanolamine N-methyltransferase (PNMT), a specific marker of the adrenergic phenotype, were studied with immunocytochemistry and catalytic assay. The appearance of immunoreactivity to dopamine beta-hydroxylase (DBH-IR), an enzyme common to the noradrenergic and adrenergic phenotypes, was also studied. DBH-IR was initially observed on embryonic Day 13 (E13) in cells located on the ventrolateral floor and wall of the rhombencephalon. A day later (E14), PNMT-IR cells and PNMT catalytic activity were observed in the rhombencephalon suggesting that, as in the adrenal gland, noradrenergic expression precedes adrenergic expression. The PNMT-IR cells were presumed to be precursors of C1 neurons since they were located in the ventrolateral medulla oblongata. Cells located in the wall of the medulla which appeared to be migrating ventrally to the C1 group also contained PNMT-IR. On E15, cells which had PNMT-IR processes coursing through the germinal zone were observed dorsally near the fourth ventricle. Although the location of the C1 cell group was apparent when PNMT was initially expressed, the dorsal C2 and C3 adrenergic cell groups were not evident until late in gestation on E19. Even in the term embryo there appeared to be PNMT-IR cells which had not yet reached their final destination. On E14 and E15, PNMT-IR cells were also observed on the floor of the pons just rostral to the pontine flexure. However, these were not observed in older embryos, suggesting that transient expression of PNMT occurs in brain, as well as in the periphery. To determine whether glucocorticoids regulate brain PNMT, we examined the effects of altered glucocorticoid levels. In contrast to PNMT in the sympathetic nervous system, PNMT activity in medulla oblongata was not affected in neonates or adults by the decrease in glucocorticoids following adrenalectomy or hypophysectomy. Conversely, elevation of glucocorticoids by hormonal treatment did not alter PNMT in neonates. Notably, however, treatment of pregnant rats with dexamethasone on E18-E21, but not earlier, increased PNMT activity in the fetal brain stem. These observations suggest that PNMT expression and development is regulated by different factors in cells derived from neural crest and tube. PNMT is expressed earlier in brain than in adrenal and sympathetic ganglia. Further, the development of PNMT in the periphery, but not in the brain, is dependent on maintenance of physiological levels of glucocorticoids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effects of the acute and chronic administration of chlordiazepoxide on spontaneous motility and on the reactivity of the generator of embryonic motility were studied in chick embryos from the 4th to the 19th day of incubation. 1. The acute administration of chlordiazepoxide (5 mg/kg e.w.) significantly depressed spontaneous motility from the 13th day of incubation. 2. The chronic administration of chlordiazepoxide (12.2 mg/kg e.w./24 h) from the 4th to the 8th, 12th and 16th day of incubation enhanced the reduction of the spontaneous motility of 17-day-old embryos. 3. The chronic administration of chlordiazepoxide significantly modified the activity of both activators (strychnine, metrazol, bicuculline, picrotoxin) and inhibitors (GABA, chlordiazepoxide) of the spontaneous motility of chick embryos.  相似文献   

17.
In this work, we describe the ability of living hemocytes from an insect (Manduca sexta, Lepidoptera) to hydrolyze extracellular ATP. In these intact cells, there was a low level of ATP hydrolysis in the absence of any divalent metal (8.24 +/- 0.94 nmol of Pi/h x 10(6) cells). The ATP hydrolysis was stimulated by MgCl2 and the Mg2+-dependent ecto-ATPase activity was 15.93 +/- 1.74 nmol of Pi/h x 10(6) cells. Both activities were linear with cell density and with time for at least 90 min. The addition of MgCl2 to extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 0.33 mM MgCl2. This stimulatory activity was not observed when Ca2+ replaced Mg2+. The apparent Km values for ATP-4 and Mg-ATP2- were 0.059 and 0.097 mM, respectively. The Mg2+-independent ATPase activity was unaffected by pH in the range between 6.6 and 7.4, in which the cells were viable. However, the Mg2+-dependent ATPase activity was enhanced by an increase of pH. These ecto-ATPase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A1, ouabain, furosemide, vanadate, sodium fluoride, tartrate, and levamizole. To confirm the observed hydrolytic activities as those of an ecto-ATPase, we used an impermeant inhibitor, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid), as well as suramin, an antagonist of P2-purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-independent and the Mg2+-dependent ATPase activities to different extents. Interestingly, lipopolysaccharide, a component of cell walls of gram-negative bacteria that increase hemocyte aggregation and phagocytosis, increased the Mg2+-dependent ecto-ATPase activity in a dose-dependent manner but did not modify the Mg2+-independent ecto-ATPase activity.  相似文献   

18.
Abstract— We have in the present study investigated the properties of mevalonate kinase, phosphomevalonate kinase and pyrophosphomevalonate decarboxylase in the 105,000 g supernatant fractions from rat brain, and determined whether the activities of these enzymes change during brain development. All three enzymes in brain showed a specific requirement for ATP for optimal activity. The presence of Mg2+ as divalent cation was also required for optimal activity of mevalonate kinase and phosphomevalonate kinase. Both Mg2+ and Mn2+ were equally effective divalent metal ions for pyrophosphomevalonate decarboxylase in brain. Mevalonate kinase as well as phosphomevalonate kinase were active in a broad pH range of 6.5–8 while the pH curve for pyrophosphomevalonate decarboxylase showed a peak activity at approx 6. No age-dependent change occurred in the activities of mevalonate kinase and phosphomevalonate kinase in developing brain, whereas pyrophosphomevalonate decarboxylase activity in brain increased during the 1st week after birth, reached a peak value at about the 8th day of age and declined slowly thereafter. The Km for brain mevalonate kinase in 2, 13 and 52 day old rats were 312, 400 and 434 μM, respectively. The V max for the kinase in 2, 13 and 52 day old rats were in the range of 45–52 nmol/h/mg protein, respectively. This suggests that, like in liver (R amachandran & S hah , 1976), pyrophosphomevalonate decarboxylase in brain may also be one regulatory step for cholesterol synthesis.  相似文献   

19.
A novel ATPase was solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, with low ionic strength buffer containing EDTA. The enzyme was purified to homogeneity by hydrophobic chromatography and gel filtration. The molecular weight of the purified enzyme was estimated to be 360,000. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate revealed that it consisted of three kinds of subunits, alpha, beta, and gamma, whose molecular weights were approximately 69,000, 54,000, and 28,000, respectively, and the most probable subunit stoichiometry was alpha 3 beta 3 gamma 1. The purified ATPase hydrolyzed ATP, GTP, ITP, and CTP but not UTP, ADP, AMP, or p-nitrophenylphosphate. The enzyme was highly heat stable and showed an optimal temperature of 85 degrees C. It showed an optimal pH of around 5, very little activity at neutral pH, and another small activity peak at pH 8.5. The ATPase activity was significantly stimulated by bisulfite and bicarbonate ions, the optimal pH remaining unchanged. The Lineweaver-Burk plot was linear, and the Km for ATP and the Vmax were estimated to be 1.6 mM and 13 mumol Pi.mg.-1.min-1, respectively, at pH 5.2 at 60 degrees C in the presence of bisulfite. The chemical modification reagent, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, caused inactivation of the ATPase activity although the enzyme was not inhibited by N,N'-dicyclohexylcarbodiimide, N-ethyl-maleimide, azide or vanadate. These results suggest that the ATPase purified from membranes of S. acidocaldarius resembles other archaebacterial ATPases, although a counterpart of the gamma subunit has not been found in the latter. The relationship of the S. acidocaldarius ATPase to other ion-transporting ATPases, such as F0F1 type or E1E2 type ATPases, was discussed.  相似文献   

20.
ATP-sulfurylase (ATP:sulfate adenylyltransferase, EC 2.7.7.4), purified about 200-fold from sea urchin embryos, was free of ATPase and inorganic pyrophosphatase. The molecular weight of the enzyme was approx. 280 000 measured by gel filtration. The enzyme was activated by Mg2+, Ca2+ or Zn2+; EDTA and p-chloromercuriphenylsulfonate inhibited the enzyme activity. The inhibition was reversed by addition of Mg2+ and dithiothreitol, respectively. The enzyme activity increased continuously as the pH was raised from 5.6 to 10.6. The Km values for the enzyme were calculated to be 13 microM for adenosine 5'-phosphosulfate and 23 microM for pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号