首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine is a purine nucleoside with immunosuppressive activity that acts through cell surface receptors (A(1), A(2a), A(2b), A(3)) on responsive cells such as T lymphocytes. IL-2 is a major T cell growth and survival factor that is responsible for inducing Jak1, Jak3, and STAT5 phosphorylation, as well as causing STAT5 to translocate to the nucleus and bind regulatory elements in the genome. In this study, we show that adenosine suppressed IL-2-dependent proliferation of CTLL-2 T cells by inhibiting STAT5a/b tyrosine phosphorylation that is associated with IL-2R signaling without affecting IL-2-induced phosphorylation of Jak1 or Jak3. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reversed by the protein tyrosine phosphatase inhibitors sodium orthovanadate and bpV(phen). Adenosine dramatically increased Src homology region 2 domain-containing phosphatase-2 (SHP-2) tyrosine phosphorylation and its association with STAT5 in IL-2-stimulated CTLL-2 T cells, implicating SHP-2 in adenosine-induced STAT5a/b dephosphorylation. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reproduced by A(2) receptor agonists and was blocked by selective A(2a) and A(2b) receptor antagonists, indicating that adenosine was mediating its effect through A(2) receptors. Inhibition of STAT5a/b phosphorylation was reproduced with cell-permeable 8-bromo-cAMP or forskolin-induced activation of adenylyl cyclase, and blocked by the cAMP/protein kinase A inhibitor Rp-cAMP. Forskolin and 8-bromo-cAMP also induced SHP-2 tyrosine phosphorylation. Collectively, these findings suggest that adenosine acts through A(2) receptors and associated cAMP/protein kinase A-dependent signaling pathways to activate SHP-2 and cause STAT5 dephosphorylation that results in reduced IL-2R signaling in T cells.  相似文献   

2.
Members of the recently discovered SOCS/CIS/SSI family have been proposed as regulators of cytokine signaling, and while targets and mechanisms have been suggested for some family members, the precise role of these proteins remains to be defined. To date no SOCS proteins have been specifically implicated in interleukin-2 (IL-2) signaling in T cells. Here we report SOCS-3 expression in response to IL-2 in both T-cell lines and human peripheral blood lymphocytes. SOCS-3 protein was detectable as early as 30 min following IL-2 stimulation, while CIS was seen only at low levels after 2 h. Unlike CIS, SOCS-3 was rapidly tyrosine phosphorylated in response to IL-2. Tyrosine phosphorylation of SOCS-3 was observed upon coexpression with Jak1 and Jak2 but only weakly with Jak3. In these experiments, SOCS-3 associated with Jak1 and inhibited Jak1 phosphorylation, and this inhibition was markedly enhanced by the presence of IL-2 receptor beta chain (IL-2Rbeta). Moreover, following IL-2 stimulation of T cells, SOCS-3 was able to interact with the IL-2 receptor complex, and in particular tyrosine phosphorylated Jak1 and IL-2Rbeta. Additionally, in lymphocytes expressing SOCS-3 but not CIS, IL-2-induced tyrosine phosphorylation of STAT5b was markedly reduced, while there was only a weak effect on IL-3-mediated STAT5b tyrosine phosphorylation. Finally, proliferation induced by both IL-2- and IL-3 was significantly inhibited in the presence of SOCS-3. The findings suggest that when SOCS-3 is rapidly induced by IL-2 in T cells, it acts to inhibit IL-2 responses in a classical negative feedback loop.  相似文献   

3.
Cadmium is an environmental contaminant producing numerous pathological effects including neurological disorders. The mechanisms through which cadmium produces neurotoxicities are not completely known. We found that divalent cadmium (CdCl2) inhibited ciliary neurotrophic factor (CNTF)-mediated Jak1 and Jak2 tyrosine kinase signaling in human BE(2)-C neuroblastoma cells. CdCl2 concentrations as low as 0.1 microM and for times as brief as 2 h significantly reduced CNTF-induced tyrosine phosphorylation of both STAT1 and STAT3, the principle substrates of Jak kinases in neurons. The phosphorylation of STAT1 by interferon-gamma was also inhibited by CdCl2. However, activation of the fibroblast growth factor receptor tyrosine kinase was not inhibited by CdCl2. Jak/STAT signaling was inhibited by CdCl2 selectively in cultures of chick retina neurons and neuroblastoma cells, whereas signaling in the nonneuronal cells HepG2 and chick skeletal myotubes was not affected. Results using dichlorofluorescein indicated CdCl2 increased cellular oxidative stress, and all of these effects of CdCl2 were protected against by pretreatment with antioxidants. Neuronal inhibition of Jak kinase by CdCl2-induced oxidative stress is a new mechanism of cadmium action which may directly produce neurotoxic symptoms as well as implicate cadmium and related metals as environmental factors in the etiology of neurodegenerative diseases.  相似文献   

4.
Hematopoietic cytokines, including interleukin (IL)-3 and erythropoietin (Epo), regulate hematopoiesis by stimulating their receptors coupled with the Jak2 tyrosine kinase to induce receptor tyrosine phosphorylation and activate mainly the STAT5, PI3K/Akt, and Ras/MEK/ERK signaling pathways. Here we demonstrate that IL-3 or Epo induces a rapid and transient (peaking at 30 min) as well as late progressive increase in reactive oxygen species (ROS) in a hematopoietic progenitor model cell line, 32Dcl3, and its subclone expressing the Epo receptor (EpoR), 32D/EpoR-Wt. The cytokine-induced ROS generation was not affected in 32Dcl3 cells depleted of mitochondrial DNA. The antioxidant N-acetyl-L-cysteine (NAC) inhibited IL-3-induced tyrosine phosphorylation of Jak2, IL-3 receptor betac subunit (IL-3Rbetac), and STAT5 as well as activation-specific phosphorylation of Akt, MEK, and ERK, while treatment of cells with H2O2 activated these signaling events. NAC also inhibited the EpoR-induced transphosphorylation of IL-3Rbetac. Moreover, NAC treatment reduced the expression levels of c-Myc, Cyclin D2, and Cyclin E, and induced expression of p27, thus inhibiting the G1 to S phase transition of cells cultured with IL-3. Further studies have shown that the degradation of c-Myc was facilitated or inhibited by treatment of cells with NAC or H2O2, respectively. These data indicate that the rapid generation of ROS by cytokine stimulation, which is at least partly independent of mitochondria, may play a role in activation of Jak2 and the STAT5, PI3K/Akt, and Ras/MEK/ERK signaling pathways as well as in transactivation of cytokine receptors. The cytokine-induced ROS generation was also implicated in G1 to S progression, possibly through stabilization of c-Myc and induction of G1 phase Cyclin expression leading to suppression of p27.  相似文献   

5.
Previous studies have demonstrated that Leishmania donovani attenuates STAT1-mediated signaling in macrophages; however it is not clear whether other species of Leishmania, which cause cutaneous disease, also interfere with macrophage IFN-gamma signaling. Therefore, we determined the effect of Leishmania major and Leishmania mexicana infection on STAT1-mediated IFN-gamma signaling pathway in J774A.1 and RAW264.7 macrophages. We found that both L. major and L. mexicana suppressed IFNgammaRalpha (alpha subunit of interferon gamma receptor) and IFN-gammaRbeta (beta subunit of interferon gamma receptor) expression, reduced levels of total Jak1 and Jak2, and down-regulated IFN-gamma-induced Jak1, Jak2 and STAT1 activation. The effect of L. mexicana infection on Jak1, Jak2 and STAT1 activation was more profound when compared with L. major. Although tyrosine phosphorylation of STAT1alpha was decreased in IFN-gamma stimulated macrophages infected with L. major or L. mexicana, those infected with L. mexicana showed a significant increase in phosphorylation of the dominant negative STAT1beta. These findings indicate that L. major and L. mexicana attenuate STAT1-mediated IFN-gamma signaling in macrophages. Furthermore, they also demonstrate that L. mexicana preferentially enhances tyrosine phosphorylation of dominant negative STAT1beta, which may be one of the several survival mechanisms used by this parasite to evade the host defense mechanisms.  相似文献   

6.
7.
Janus (Jak) tyrosine kinases contain a tyrosine kinase (JH1) domain adjacent to a catalytically inactive pseudokinase domain (JH2). The JH2 domain has been implicated in regulation of Jak activity, but its function remains poorly understood. Here, we found that the JH2 domain negatively regulates the activity of Jak2 and Jak3. Deletion of JH2 resulted in increased tyrosine phosphorylation of the Jak2- and Jak3-JH2 deletion mutants as well as of coexpressed STAT5. In cytokine receptor signaling, the deletion of the Jak2- and Jak3-JH2 domains resulted in interferon-gamma and interleukin-2-independent STAT activation, respectively. However, cytokine stimulations did not further induce the JH2 deletion mutant-mediated STAT activation. The deletion of the Jak2 JH2 domain also abolished interferon-gamma-inducible kinase activation, although it did not affect the reciprocal Jak1-Jak2 interaction in 293T cells. Chimeric constructs, where the JH2 domains were swapped between Jak2 and Jak3, retained low basal activity and cytokine inducible signaling, indicating functional conservation between the two JH2 domains. However, the basal activity of Jak2 was significantly lower than that of Jak3, suggesting differences in the regulation of Jak2 and Jak3 activity. In conclusion, we found that the JH2 domain has a conserved function in Jak2 and Jak3. The JH2 domain is required for two distinct functions in cytokine signaling: (i) inhibition of the basal activity of Jak2 and Jak3, and (ii) cytokine-inducible activation of signaling. The Jak-JH2 deletion mutants are catalytically active, activate STAT5, and interact with another Jak kinase, but the JH2 domain is required to connect these signaling events to receptor activation. Thus, we propose that the JH2 domain contributes to both the uninduced and ligand-induced Jak-receptor complex, where it acts as a cytokine-inducible switch to regulate signal transduction.  相似文献   

8.
The Jak/STAT pathway is activated following stimulation of the type I angiotensin II receptor. To examine whether this pathway is shared among other G-protein-coupled receptors, we studied the linkage between the alpha(1) adrenergic receptor and this pathway. The alpha(1) agonist phenylephrine induced tyrosine phosphorylation of Jak2, Tyk2, and STAT1 in vascular smooth muscle cells. The phosphorylation of Jak2 was prevented by the alpha(1) receptor antagonists prazosin and chloroethylclonidine, but not by WB4101, and that of STAT1 was inhibited by prazosin and the Jak2 inhibitor AG490. After stimulation with phenylephrine, Jak2 and STAT1 were found to associate with alpha(1B) receptor. Phenylephrine stimulated the DNA binding activity of STAT1. Protein synthesis promoted by phenylephrine was inhibited by prazosin, AG490, and the introduction of a decoy oligonucleotide for STAT1. These results suggested that alpha(1) receptor is linked to the Jak/STAT pathway and that this pathway mediates alpha(1) agonist-induced smooth muscle hypertrophy.  相似文献   

9.
Adhesion of hematopoietic cells, mainly through alpha4beta1 and alpha5beta1 integrins, to the bone marrow microenvironment may play important roles in regulation of hematopoiesis. However, the mechanisms for signaling, outside-in signaling, have largely remained to be established. We demonstrate here that cross-linking of alpha4beta1 by anti-alpha4 antibody induces tyrosine phosphorylation of Pyk2, Shc, and Cbl as well as binding of the adaptor protein CrkL with Cbl in a murine hematopoietic cell line, 32D/EpoR-Wt. Furthermore, cross-linking of alpha4beta1 induced activation of the Rho family small GTPase Rac, which was enhanced by induced overexpression of CrkL and was inhibited by the phosphatidylinositol 3(')-kinase (PI3K) inhibitor LY294002. In addition, adhesion of 32D/EpoR-Wt cells to immobilized H-296, a recombinant fibronectin peptide specific for alpha4beta1, induced tyrosine phosphorylation of Jak2, the erythropoietin receptor (EpoR), and the IL-3 receptor beta subunit as well as Pyk2, Shc, and Cbl. Tyrosine phosphorylation of Jak2 and EpoR was also induced in a human leukemic cell line, UT-7, by adhesion to immobilized H-296. However, adhesion of 32D/EpoR-PM4 cells, expressing the W282R mutant EpoR defective in coupling with Jak2, to immobilized H-296 failed to induce tyrosine phosphorylation of the mutant EpoR. These results implicate CrkL in PI3K-dependent activation of Rac by outside-in signaling from alpha4beta1 and suggest that adhesion through alpha4beta1 further activates cytokine receptor-associated Jak2 to induce phosphorylation of these receptors.  相似文献   

10.
Misregulated interleukin-6 (IL-6)-induced Jak/STAT signaling contributes to many diseases. Under non-pathological conditions Jak/STAT signaling is tightly regulated by a complex network of regulators. One of these regulators is the protein tyrosine phosphatase SH2-containing phosphatase 2 (SHP2). Although SHP2 is known to be a negative regulator of IL-6-induced Jak/STAT signaling, its exact molecular function is not entirely understood. To elucidate the function of SHP2 in IL-6 signaling we followed a systems biology approach, in which modeling, stepwise model refinement, and experimental analysis are closely linked. We come up with an identifiable model of early Jak/STAT signaling that describes the data and proves to be predictive. The model-based analysis implies that (1) the stepwise association of IL-6 with gp80 and gp130 and (2) STAT3 dimerization at the receptor are essential for the dynamics of early pathway activation, and (3) phosphorylation of SHP2 is nonlinear. Furthermore, the modeling results indicate that SHP2 does not act as a feedback inhibitor in an early phase of IL-6-induced Jak/STAT signaling. However, experimental data reveal that SHP2 exhibits a basal repressory function.  相似文献   

11.
12.
13.
Interleukin-7 (IL-7) receptor signaling begins with activation of the Janus tyrosine kinases Jak1 and Jak3, which are associated with the receptor complex. To identify potential targets of these kinases, we examined Pyk2 (a member of the focal adhesion kinase family) using an IL-7-dependent murine thymocyte line, D1. We demonstrate that stimulation of D1 (or normal pro-T) cells by IL-7 rapidly increased tyrosine phosphorylation and enzymatic activity of Pyk2, with kinetics slightly lagging that of Jak1 and Jak3 phosphorylation. Conversely, IL-7 withdrawal resulted in a marked decrease of Pyk2 phosphorylation. Pyk2 was found to be physically associated with Jak1 prior to IL-7 stimulation and to increase its association with IL-7Ralpha chain following IL-7 stimulation. Pyk2 appeared to be involved in cell survival, because antisense Pyk2 accelerated the cell death process. Activation of Pyk2 via the muscarinic and nicotinic receptors using carbachol or via intracellular Ca(2+) rise using ionomycin/phorbol myristate acetate promoted survival in the absence of IL-7. These data support a role for Pyk2 in coupling Jak signaling to the trophic response.  相似文献   

14.
Previous studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-α/β signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFNα/β induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNα/β but also IFNγ-induced STAT phosphorylation and to inhibit the IFNα/β and IFNγ-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNα/β or IFNγ-induced gene expression and to inhibit the induction of an antiviral state by IFNα/β. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNα/β and IFNγ is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling.  相似文献   

15.
The interleukin-2 (IL-2) receptor (IL-2R) consists of three distinct subunits (alpha, beta, and gamma c) and regulates proliferation of T lymphocytes. Intracellular signalling results from ligand-mediated heterodimerization of the cytoplasmic domains of the beta and gamma c chains. To identify the residues of gamma c critical to this process, mutations were introduced into the cytoplasmic domain, and the effects on signalling were analyzed in the IL-2-dependent T-cell line CTLL2 and T-helper clone D10, using chimeric IL-2R chains that bind and are activated by granulocyte-macrophage colony-stimulating factor. Whereas previous studies of fibroblasts and transformed T cells have suggested that signalling by gamma c requires both membrane-proximal and C-terminal subdomains, our results for IL-2-dependent T cells demonstrate that the membrane-proximal 52 amino acids are sufficient to mediate a normal proliferative response, including induction of the proto-oncogenes c-myc and c-fos. Although gamma c is phosphorylated on tyrosine upon receptor activation and could potentially interact with downstream molecules containing SH2 domains, cytoplasmic tyrosine residues were dispensable for mitogenic signalling. However, deletion of a membrane-proximal region conserved among other cytokine receptors (cytoplasmic residues 5 to 37) or an adjacent region unique to gamma c (residues 40 to 52) abrogated functional interaction of the receptor chain with the tyrosine kinase Jak3. This correlated with a loss of all signalling events analyzed, including phosphorylation of the IL-2R beta-associated kinase Jak1, expression of c-myc and c-fos, and induction of the proliferative response. Thus, it appears in T cells that Jak3 is a critical mediator of mitogenic signaling by the gamma c chain.  相似文献   

16.
17.
The cytoplasmic localized Janus tyrosine kinase 3 (Jak3) is activated by multiple cytokines, including IL-2, IL-4, and IL-7, through engagement of the IL-2R common gamma-chain. Genetic inactivation of Jak3 is manifested as SCID in humans and mice. These findings have suggested that Jak3 represents a pharmacological target to control certain lymphoid-derived diseases. Using the rat T cell line Nb2-11c, we document that tyrphostin AG-490 blocked in vitro IL-2-induced cell proliferation (IC(50) approximately 20 microM), Jak3 autophosphorylation, and activation of its key substrates, Stat5a and Stat5b, as measured by tyrosine/serine phosphorylation analysis and DNA-binding experiments. To test the notion that inhibition of Jak3 provides immunosuppressive potential, a 7-day course of i.v. therapy with 5-20 mg/kg AG-490 was used to inhibit rejection of heterotopically transplanted Lewis (RT1(l)) heart allografts in ACI (RT1(a)) recipients. In this study, we report that AG-490 significantly prolonged allograft survival, but also acted synergistically when used in combination with the signal 1 inhibitor cyclosporin A, but not the signal 3 inhibitor, rapamycin. Finally, AG-490 treatment reduced graft infiltration of mononuclear cells and Stat5a/b DNA binding of ex vivo IL-2-stimulated graft infiltrating of mononuclear cells, but failed to affect IL2R alpha expression, as judged by RNase protection assays. Thus, inhibition of Jak3 prolongs allograft survival and also potentiates the immunosuppressive effects of cyclosporin A, but not rapamycin.  相似文献   

18.
The Fanconi anemia (FA) group C protein, FANCC, interacts with STAT1 following stimulation with IFN-gamma and is required for proper docking of STAT1 at the IFN-gamma receptor alpha-chain (IFN-gammaRalpha, IFN-gammaR1). Consequently, loss of a functional FANCC results in decreased activation of STAT1 following IFN-gamma stimulation. Because type I IFN receptors influence the function of type II receptors, and vice versa, we conducted experiments designed to determine whether type I IFN-induced activation of other STAT proteins is compromised in FA-C cells and found that activation of STAT 1, 3, and 5 is diminished in type I IFN-stimulated cells bearing Fancc-inactivating mutations. We also determined that the reduced activation of STATs was accompanied by significant reduction of type I IFN-induced tyrosine kinase 2 and Jak1 phosphorylation. Because tyrosine kinase 2 plays a role in differentiation of Th cells, we quantified cytokine secretion from CD4+ cells and in vitro generated CD4+ Th cell subsets from splenocytes of Fancc null mice to that of heterozygous mice and discovered reduced CD4+ IFN-gamma secretion in the Fancc-/- mouse, indicating impaired Th1 differentiation. We suggest that Fancc mutations result in a subtle immunological defect owing to the failure of FANCC to normally support Jak/STAT signaling.  相似文献   

19.
20.
Polarized Th1 cells show a stable phenotype: they become insensitive to IL-4 stimulation and lose the potential to produce IL-4. Previously, we reported that IFN-gamma played a critical role in stabilizing Th1 phenotype. However, the mechanism by which IFN-gamma stabilizes Th1 phenotype is not clear. In this study, we compared STAT6 phosphorylation in wild-type (WT) and IFN-gamma receptor knockout (IFNGR(-/-)) Th1 cells. We found a striking diminution of STAT6 phosphorylation in differentiated WT Th1 cells, but not in differentiated IFNGR(-/-) Th1 cells. The impairment of STAT6 phosphorylation in differentiated WT Th1 cells was not due to a lack of IL-4R expression or phosphorylation. Jak1 and Jak3 expression and phosphorylation were comparable in both cell types. No differential expression of suppressor of cytokine signaling 1 (SOCS1), SOCS3, or SOCS5 was observed in the two cell types. In addition, Src homology 2-containing phosphatase mutation did not affect IL-4-induced STAT6 phosphorylation in differentiated Th1 cells derived from viable motheaten (me(v)/me(v)) mice. These results led us to focus on a novel mechanism. By using a pulldown assay, we observed that STAT6 in WT Th1 cells bound less effectively to the phosphorylated IL-4R/GST fusion protein than that in IFNGR(-/-) Th1 cells. Our results suggest that IFN-gamma may suppress phosphorylation of STAT6 by inhibiting its recruitment to the IL-4R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号