首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glial fibrillary acidic protein (GFAP) is a glial-specific intermediate filament protein, which is expressed in astrocytes in the central nervous system, as well as in astrocytoma cell lines. To investigate the function of GFAP, we have studied the human astrocytoma cell line, U251, which constitutively expresses GFAP and vimentin in the same 10-nm filaments. These cells respond to neurons in vitro in the same way as primary astrocytes: they withdraw from the cell cycle, support neuronal cell survival and neurite outgrowth, and they extend complex, GFAP-positive processes. To determine the role of GFAP in these responses, we have specifically suppressed its expression by stably transfecting the U251 cells with an antisense GFAP construct. Two stable antisense cell lines from separate transfections were isolated and were shown to be GFAP negative by Northern and Western blot analyses, and by immunofluorescence studies. The antisense cell lines were inhibited in their ability to extend significant glial processes in response to neurons. In culture with primary neurons, the average increase in process length of the U251 cells was nearly 400%, as compared to only 14% for the antisense transfectants. The other neuron induced responses of astrocytes, i.e., proliferative arrest and neuronal support, were not affected in these cell lines. These data support the conclusion that the glial-specific intermediate filament protein, GFAP, is required for the formation of stable astrocytic processes in response to neurons.  相似文献   

2.
Specific interactions between neurons and glia dissociated from early postnatal mouse cerebellar tissue were studied in vitro by indirect immunocytochemical staining with antisera raised against purified glial filament protein, galactocerebroside, and the NILE glycoprotein. Two forms of cells were stained with antisera raised against purified glial filament protein. The first, characterized by a cell body 9 microns diam and processes 130-150 microns long, usually had two to three neurons associated with them and resembled Bergmann glia. The second had a slightly larger cell body with markedly shorter arms among which were nestled several dozen neuronal cells, and resembled astrocytes of the granular layer. Staining with monoclonal antisera raised against purified galactocerebroside revealed the presence of immature oligodendroglia in the cultures. These glial cells constituted approximately 2% of the total cell population in the cultures and, in contrast to astroglia, did not form specific contacts with neurons. Staining with two neuronal markers, antisera raised against purified NILE glycoprotein and tetanus toxin, revealed that most cells associated with presumed astroglia were small neurons (5-8 microns). After 1-2 d in culture, some stained neurons had very fine, short processes. Nearly all of the processes greater than 10-20 micron long were glial in origin. Electron microscopy also demonstrated the presence of two forms of astroglia in the cultures, each with a different organizing influence on cerebellar neurons. Most neurons associated with astroglia were granule neurons, although a few larger neurons sometimes associated with them. Time-lapse video microscopy revealed extensive cell migration (approximately 10 microns/h) along the arms of Bergmann-like astroglia. In contrast, cells did not migrate along the arms of astrocyte-like astroglia, but remained stationary at or near branch points. Growth cone activity, pulsating movements of cell perikarya, and ruffling of the membranes of glial and neuronal processes were also seen.  相似文献   

3.
Abstract: The cellular functions of the intermediate filament family including glial fibrillary acidic protein (GFAP) are not well known yet beyond their roles as structural elements of cells. Expression of GFAP, which is specific in astrocytes and regulated developmentally, suggests its involvement in cell growth and differentiation of astrocytes. We transfected murine GFAP cDNA into a rat astrocytoma C6 cell line to assess the specific effect of GFAP on cells. Two stable GFAP-transfected cell lines, GFC6-5 and GFC6-6, exhibited a series of morphological and growth characteristics that distinguish them from their counterparts, i.e., NeoC6 cells transfected only with the neomycin-resistant gene, and native C6 cells. Both GFC6-5 and GFC6-6 cells showed elongated cell shapes with extended processes rich in GFAP, markedly suppressed cell growth, and decreased bromodeoxyuridine uptake. Western blot analysis revealed a remarkable increase of GFAP expression in GFC6-5 and GFC6-6 compared with that in NeoC6 and C6, in contrast to similar vimentin expression in all cell lines. The results indicate that the expression of GFAP has dramatic effects on cell morphology and cell growth suppression in C6 cells, suggesting that GFAP may function as a tumor suppressor in astrocytoma.  相似文献   

4.
Receptor agonists that increase cyclic AMP levels in cultured astroglia have been shown to increase 32P-labeling of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin in these cells. Experiments were designed to determine if the increase in 32P-labeling resulted from either an increase in the turnover or net number of phosphates associated with the intermediate filament proteins and if the phosphorylation of these proteins causally affected astroglial morphology. Time course experiments indicated that 6-8 h were required to reach steady-state 32P-labeling of both GFAP and vimentin. Treatment with forskolin (10 microM) after steady-state 32P-labeling increased GFAP and vimentin phosphorylation fourfold and twofold, respectively, and also induced a morphological change from polygonal to process-bearing cells within 20-30 min of drug addition. Cells incubated in media containing brain extract (30%) for 24 h at 37 degrees C and then 3 h at 23 degrees C underwent changes from polygonal to process-bearing cells with no apparent increase in the phosphorylation of either GFAP or vimentin. Treatment of process-bearing cells (induced by brain extract) or polygonal cells with 10 microM forskolin at 23 degrees C resulted in a three- to fourfold increase in GFAP phosphorylation without significant morphological changes. These results suggest that forskolin stimulation of GFAP and vimentin increases net number of phosphates associated with these intermediate filament proteins and that the resulting increase in phosphorylation can be dissociated from morphological changes.  相似文献   

5.
Previously we have used a microwell tissue culture assay to show that early postnatal mouse cerebellar astroglia have a flattened morphology and proliferate rapidly when they are cultured in the absence of neurons, but develop specific cell-cell contacts and undergo morphological differentiation when they are co-cultured with purified granule neurons (Hatten, M. E., 1985, J. Cell Biol., 100:384-396). In these studies of cell binding between neurons and astroglia, measurement with light and fluorescence microscopy or with [35S]methionine-labeled cells indicated that the kinetics of the binding of the neurons to astroglial cells are rapid, occurring within 10 min of the addition of the neurons to the growing glia. 6 h after neuronal attachment, astroglial DNA synthesis decreases, as shown by a two- to fivefold decrease in [3H]thymidine incorporation, and glial growth ceases. No effects on astroglial cell growth were seen after adding medium conditioned by purified cerebellar neurons cultured in the absence of astroglia, by astroglia cultured in the absence of neurons, or by a mixed population of cerebellar cells. This result was unchanged when any of these media were concentrated up to 50-fold, or when neurons and astroglia were cultured in separate chambers with confluent medium. Two groups of experiments suggest that membrane-membrane interactions between granule neurons and astroglia control astroglial cell growth. First, neurons fixed with dilute amounts of paraformaldehyde (0.5%) bound to the astroglia with the same kinetics as did living cells, inhibited DNA synthesis, and arrested glial growth within hours. Second, a cell membrane preparation of highly purified granule neurons also bound rapidly to the glia, decreased [3H]thymidine incorporation two- to fivefold and inhibited astroglial cell growth. The rate of the decrease in glial growth depended on the concentration of the granule neural membrane preparation added. A similar membrane preparation from purified cerebellar astroglial cells, PC12 cells, 3T3 mouse fibroblasts, or PTK rat epithelial cells did not decrease astroglial cell growth rates. Living neurons were the only preparation that both inhibited glial DNA synthesis and induced the astroglial cells to transform from the flat, epithelial shapes they have when they are cultured without neurons to highly differentiated forms that resemble Bergmann glia or astrocytes seen in vivo. These results suggest that membrane-membrane interactions between neurons and astroglia inhibit astroglial proliferation in vitro, and raise the possibility that membrane elements involved in glial growth regulation include neuron-glial interaction molecules.  相似文献   

6.
A recombinant measles virus which expresses enhanced green fluorescent protein (MVeGFP) has been used to infect two astrocytoma cell lines (GCCM and U-251) to study the effect of virus infection on the cytoskeleton. Indirect immunocytochemistry was used to demonstrate the cellular localization of the cytoskeletal components. Enhanced green fluorescent protein autofluorescence was used to identify measles virus-infected cells. No alteration of the actin, tubulin, or vimentin components of the cytoskeleton was observed in either cell type, whereas a disruption of the glial-fibrillary-acidic protein filament (GFAP) network was noted in MVeGFP-infected U-251 cells. The relative amounts of GFAP present in infected and uninfected U-251 cells were quantified by image analysis of data sets obtained by confocal microscopy by using vimentin, another intermediate filament on which MVeGFP has no effect, as a control.  相似文献   

7.
Summary Some intermediate filament (IF) proteins expressed in the development of glia include nestin, vimentin, and glial fibrillary acidic protein (GFAP). However, GFAP is the major intermediate filament protein of mature astrocytes. To determine the organization of GFAP in glial cells, rat GFAP cDNA tagged with enhanced green fluorescent protein (EGFP) was transfected into the rat C6 glioma cell line. After selection, two stable C6-EGFP-GFAP cell lines were established. Stable C6-EGFP-GFAP cell lines with or without heat shock treatment were analyzed by immunocytochemistry, electron microscopy, and Western blot analysis. In the transient transfection study, EGFP-GFAP transiently expressed in C6 cells formed punctate aggregations in the cytoplasm right after transfection, but gradually a filamentous structure of EGFP-GFAP was observed. The protein level of nestin in the C6-EGFP-GFAP stable clone was similar to that in the pEGFP-C1 transfected C6 stable clones and non-transfected C6 cells, whereas the level of vimentin was reduced in Western blotting. Interestingly, the expression level of small heat shock protein αB-crystallin in C6-EGFP-GFAP cells was also enhanced after transfection. Immunostaining patterns of C6-EGFP-GFAP cells showed that GFAP was dispersed as a fine filamentous structure. However, after heat shock treatment, GFAP formed IF bundles in C6-EGFP-GFAP cells. In the meantime, αB-crystallin also colocalized with IF bundles of GFAP in C6-EGFP-GFAP cells. The heat-induced GFAP reorganization we found suggested that small heat shock protein αB-crystallin may play a functional role regulating the cytoarchitecture of GFAP.  相似文献   

8.
Summary The subcommissural organ (SCO), classified as one of the circumventricular organs, is composed mainly of modified ependymal cells, attributable to a glial lineage. Nevertheless, in the rat, these cells do not possess glial markers such as glial fibrillary acidic protein (GFAP), protein S100, or the enzyme glutamine synthetase (GS). They receive a synaptic 5-HT input and show pharmacological properties for uptake of GABA resembling the uptake mechanism of neurons. In this study, we examine the phenotype of several mammalian SCO (cat, mouse, rabbit) and compare them with the corresponding features of the rat SCO. In all these species, the SCO ependymocytes possess vimentin as an intermediate filament, but never express GFAP or neurofilament proteins. They do not contain GS as do glial cells involved in GABA metabolism, and when they contain protein S100 (rabbit, mouse), its rate is low in comparison to classical glial or ependymal cells. Thus, these ependymocytes display characteristics that differentiate them from other types of glial cells (astrocytes, epithelial ependymocytes and tanycytes). Striking interspecies differences in the capacity of SCO-ependymocytes for uptake of GABA might be related to their innervation and suggest a species-dependent plasticity in their function.  相似文献   

9.
Glial fibrillary acidic protein (GFAP) is a component of glial filaments specific to astroglia. We now report the spatial and temporal distributions of four phosphorylated sites in the GFAP molecule during mitosis of astroglial cells, determined by antibodies which can distinguish phosphorylated epitopes from non-phosphorylated-epitopes. Immunofluorescence microscopy showed that the Ser8 residues in the entire cytoplasmic glial filament system are initially phosphorylated when the cells enter mitosis. In cytokinesis, the phosphoSer8 residues become dephosphorylated, whereas Thr7, Ser13 and Ser34 in glial filaments at the cleavage furrow become the preferred sites of phosphorylation. The cdc2 kinase purified from mitotic cells can phosphorylate GFAP at Ser8 but not at Thr7, Ser13 or Ser34, in vitro. These results suggest that cdc2 kinase acts as a glial filament kinase only at the G2-M phase transition while other glial filament kinases are probably activated at the cleavage furrow before final separation of the daughter cells.  相似文献   

10.
Human cells grown in monolayer culture were microinjected with intermediate filament subunit proteins. In fibroblasts with a preexisting vimentin network, injected porcine glial fibrillary acidic protein (GFAP) co-localized with the vimentin network within 24 hours. Phosphorylated GFAP variants were found to become dephosphorylated concomitantly with their incorporation into filamentous structures. After microinjection of either porcine GFAP or murine vimentin into human carcinoma cells lacking cytoplasmic intermediate filaments, we observed that different types of filament networks developed. Whereas vimentin was incorporated into short filaments immediately after injection, GFAP was found to aggregate into rodlike structures. This may indicate a differential filament forming ability of these intermediate filament proteins in vivo.  相似文献   

11.
Intermediate filament protein partnership in astrocytes.   总被引:20,自引:0,他引:20  
Intermediate filaments are general constituents of the cytoskeleton. The function of these structures and the requirement for different types of intermediate filament proteins by individual cells are only partly understood. Here we have addressed the role of specific intermediate filament protein partnerships in the formation of intermediate filaments in astrocytes. Astrocytes may express three types of intermediate filament proteins: glial fibrillary acidic protein (GFAP), vimentin, and nestin. We used mice with targeted mutations in the GFAP or vimentin genes, or both, to study the impact of loss of either or both of these proteins on intermediate filament formation in cultured astrocytes and in normal or reactive astrocytes in vivo. We report that nestin cannot form intermediate filaments on its own, that vimentin may form intermediate filaments with either nestin or GFAP as obligatory partners, and that GFAP is the only intermediate filament protein of the three that may form filaments on its own. However, such filaments show abnormal organization. Aberrant intermediate filament formation is linked to diseases affecting epithelial, neuronal, and muscle cells. Here we present models by which the normal and pathogenic functions of intermediate filaments may be elucidated in astrocytes.  相似文献   

12.
The intermediate filament protein composition in glial cells of goldfish optic nerve differs from that found in glial cells of the goldfish spinal cord and brain. Brain and spinal cord glial cells contain glial fibrillary acidic protein (GFAP), whereas glial cells in the optic nerve contain ON3. The ON3 protein of the goldfish optic nerve was recently identified as the goldfish equivalent to the mammalian type II keratin 8 protein. In addition to the ON3 protein, the goldfish optic nerve also contains a 48-kDa protein. Immunoblotting experiments suggest that this protein is equivalent to the mammalian type I keratin 18 protein, which typically pairs with keratin 8 to form filaments. We show that these proteins are not specific to the optic nerve. The ON3 and 48-kDa proteins of the goldfish optic nerve share common antigenic properties with the predominant keratin pair expressed in the goldfish liver. These proteins are also expressed at low levels in the goldfish brain and spinal cord. In addition RNase protection assays and Northern blots indicate that the mRNA for the ON3 protein in optic nerve is identical to the message found in other goldfish tissues. The expression of ON3 was also examined in cultured glial cells from goldfish spinal cord and optic nerve and cultured fibroblast cells. Analysis of intermediate filament protein expression in cultured glial cells taken from goldfish spinal cord demonstrated the absence of GFAP in these cells and the expression of ON3. This protein was also the predominant intermediate filament protein of cultured optic nerve glial cells and fibroblasts. The differences in the expression of intermediate filament proteins in mammals and lower vertebrates are discussed. In addition, we discuss how the expression of a simple epithelial keratin pair in glial cells of the goldfish optic nerve may be associated with this system's capacity for continuous growth and regeneration.  相似文献   

13.
Preparations of isolated brain postsynaptic densities (PSDs) contain a characteristic set of proteins among which the most prominent has a molecular weight of approximately 50,000. Following the suggestion that this major PSD protein might be related to a similarly sized component of neurofilaments (F. Blomberg et al., 1977, J. Cell Biol., 74:214- 225), we searched for evidence of neurofilament proteins among the PSD polypeptides. This was done with a novel technique for detecting protein antigens in SDS-polyacrylamide gels (immunoblotting) and an antiserum that was selective for neurofilaments in immunohistochemical tests. As a control, an antiserum against glial filament protein (GFAP) was used because antisera against GFAP stain only glial cells in immunohistochemical tests. They would, therefore, not be expected to react with PSDs that occur only in neurons. The results of these experiments suggested that PSDs contain both neuronal and also glial filament proteins at higher concentrations than either synaptic plasma membranes, myelin, or myelinated axons. However, immunoperoxidase staining of histological sections with the same two antisera gave contradictory results, indicating that PSDs in intact brain tissue contain neither neuronal or glial filament proteins. This suggested that the intermediate filament proteins present in isolated PSD preparations were contaminants. To test this possibility, the proteins of isolated brain intermediate filaments were labeled with 125I and added to brain tissue at the start of a subcellular fractionation schedule. The results of this experiment confirmed that both neuronal and glial filament proteins stick selectively to PSDs during the isolation procedure. The stickiness of PSDs for brain cytoplasmic proteins indicates that biochemical analysis of subcellular fractions is insufficient to establish a given protein as a synaptic junctional component. An immunohistochemical localization of PSDs in intact tissue, which has now been achieved for tubulin, phosphoprotein I, and calmodulin, appears to be an essential accessory item of evidence. Our findings also corroborate recent evidence which suggests that isolated preparations of brain intermediate filaments contain both neuronal and glial filaments.  相似文献   

14.
In previous studies we have shown that the expression of acetylated gangliosides recognized by the JONES monoclonal antibody is correlated with regions of cell migration in the developing rat nervous system. In this study we have investigated the expression of these gangliosides in two different types of cultures prepared from dissociated postnatal rat cerebella. In the first type, cells are plated after dissociation under conditions where most of the glial cells develop a stellate morphology that anchors neurons but does not support their migration. In the second type of culture, cells are plated in a ratio of four neurons to one glial cell and under these conditions the predominant form of astroglia is an elongate form that supports the migration of granule neurons. Granule neurons express JONES antigens in dissociated cell suspensions and in cultures in which cells are plated either after dissociation or in a 4:1 neuron:glia ratio. On the other hand, glial cells grown in the absence of neurons are JONES negative. In addition, the expression of JONES gangliosides by glial cells is different in the two types of culture. In cultures where the astroglial cells display the stellate morphology only a small proportion show JONES staining. Cultures in which the glial cells assume the elongate morphology have a significantly higher number of JONES-positive astroglia.  相似文献   

15.
A probable increase of the level of calcium-binding protein S100b and soluble form of glial fibrillary acidic protein (GFAP), as well as reducing the level of filament GFAP in the brain of Wistar rats under hepatic encephalopathy development caused by chronic hepatitis (HP) were shown. Increasing concentrations of S100b may stimulate the disassembly of intermediate filaments of astrocytes. The immunohistochemical analysis helps to reveal that astrocytes in the brain of rats that had HP lose the characteristic stellate shape and swelling. Immunoblotting result have shown the fragmentation of the main filament form of GFAP and appearance of low mass derivates. Application of 2-oxoglutarate (2.28 g/l of drinking water during 10 days after the onset of chronic hepatitis) stabilized the studied proteins and the state of astroglia.  相似文献   

16.
We have previously demonstrated that inflammatory compounds that increase nitric oxide (NO) synthase expression have a biphasic effect on the level of the NO messenger cGMP in astrocytes. In this work, we demonstrate that NO-dependent cGMP formation is involved in the morphological change induced by lipopolysaccharide (LPS) in cultured rat cerebellar astroglia. In agreement with this, dibutyryl-cGMP, a permeable cGMP analogue, and atrial natriuretic peptide, a ligand for particulate guanylyl cyclase, are both able to induce process elongation and branching in astrocytes resulting from a rapid, reversible and concentration-dependent redistribution of glial fibrillary acidic protein (GFAP) and actin filaments without significant change in protein levels. These effects are also observed in astrocytes co-cultured with neurons. The cytoskeleton rearrangement induced by cGMP is prevented by the specific protein kinase G inhibitor Rp-8Br-PET-cGMPS and involves downstream inhibition of RhoA GTPase since is not observed in cells transfected with constitutively active RhoA. Furthermore, dibutyryl-cGMP prevents RhoA-membrane association, a step necessary for its interaction with effectors. Stimulation of the cGMP-protein kinase G pathway also leads to increased astrocyte migration in an in vitro scratch-wound assay resulting in accelerated wound closure, as seen in reactive gliosis following brain injury. These results indicate that cGMP-mediated pathways may regulate physio-pathologically relevant responses in astroglial cells.  相似文献   

17.
Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells, including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses, such as Japanese encephalitis virus (JEV), provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition, glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast, only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition, functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover, we discover that vimentin intermediate filament, reported as a putative neurovirulent JEV receptor, is highly expressed in NPCs and glial cells, but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally, we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection.  相似文献   

18.
We have used immunocytochemistry and in situ hybridization to examine the distribution of neuronal intermediate filament proteins and their mRNAs in the developing mouse cerebellum. First, we demonstrate that α-internexin is abundantly expressed in the developing cerebellum and is the only neuronal intermediate filament protein expressed in developing, including migrating, granule neurons. Second, in granule neuron reaggregates in vitro, α-internexin is the only neuronal intermediate filament protein highly expressed in the processes of the cultured granule neurons. This in vitro observation is consistent with results from immunocytochemistry and in situ hybridization studies of developing granule neurons in vivo, which suggest that α-internexin is the major neuronal intermediate filament protein in developing granule neurons. Finally, the neurofilament triplet proteins are expressed later, and coexist with α-internexin in other cells, including Purkinje cells and interneurons in the mature mouse cerebellum. These changes in neuronal intermediate filament composition may regulate neuronal maturation and axonal stability in cerebellar development. Furthermore, α-internexin may play a key role in neurite outgrowth and the establishment of neuronal cytoarchitecture. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The content and polypeptide composition of glial fibrillary acidic protein (GFAP) in the rat cerebral cortex, cerebellum, hippocampus, and mesencephalon were studied under conditions of experimental neurosis. Significant changes of the total GFAP content were observed in the hippocampus, mesencephalon, and cerebellum. Both the content and polypeptide composition of soluble GFAP form were markedly modified. These changes of glial filament protein apparently reflect the peculiarities of the reorganization of the astrocyte intermediate filaments at the animal’s long-term neurotization.  相似文献   

20.
Primary cultures of purified astroglia have been shown to exhibit a variety of membrane receptors that regulate intracellular cyclic AMP levels. The experiments described in this paper were completed to examine the effect of such receptor agonists on protein phosphorylation in intact astroglia. An analysis of 32P-labelled proteins derived from whole cell extracts and separated via two-dimensional gel electrophoresis indicated that increasing cyclic AMP levels in astroglia stimulated the phosphorylation of two distinct proteins that had apparent molecular weights/isoelectric points (pI) of 51K/6.0 and 57K/5.7. Similar experiments with cultured meningeal cells indicated that only the 57K/5.7 protein was phosphorylated in response to elevated levels of cyclic AMP. The 51K/6.0 protein was never observed in gels derived from meningeal cells. Immunoblot experiments indicated that the 51K/6.0 protein stained with antiserum to glial fibrillary acidic protein (GFAP) and the 57K/5.7 protein stained with antibodies to vimentin. Concentration-effect studies indicate that these proteins are maximally phosphorylated at concentrations of receptor agonists that only slightly elevate cyclic AMP levels. All receptor agonists that have been shown to increase cyclic AMP levels appear similarly efficacious with respect to increasing the phosphorylation of the two proteins. These experiments suggest that the membrane receptors present on astroglia function, in part, to regulate phosphorylation of the intermediate filament proteins GFAP and vimentin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号