首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain mitochondria were prepared from rabbit and bovine cerebral cortex and the purity and intactness of the preparation assessed through the use of enzyme markers and electron microscopy. Enzymatic properties of monoamine oxidase were studied in the purified mitochondrial preparations which were essentially devoid of major contamination by other organelles, especially microsomes. Five substrates were used for characterization of the enzyme: dopamine, kynuramine, serotonin, tryptamine and tyramine. It was found that there was considerable substrate variation in the properties, but in general, the two species showed similar characteristics. The more pertinent findings were: (1) apparent Km values ranged from 1.1 ± 10?5m for tryptamine to 2.5 ± 10?4m for dopamine; (2) substrate specificity from Vmax values in decreasing order was tyramine > dopamine > kynuramine > serotonin > tryptamine for the bovine enzyme and tyramine > kynuramine > dopamine > serotonin > tryptamine for rabbit; (3) there appeared to be three distinct pH optima according to substrate: pH 7.5 for phenylethylamines, pH 8.2–8.5 for the indolylamines and pH 9.1 for kynuramine; and (4) the activity with tyramine was highly sensitive to increased oxygen tension while kynuramine showed no sensitivity. It is proposed that the properties of monoamine oxidase, a membrane-bound enzyme, might be influenced by the microenvironment and results are also discussed in terms of multiple forms or multiple activity sites on a single form.  相似文献   

2.
Abstract— Some parameters affecting the activity of monoamine oxidase (MAO) in purified beef brain mitochondria were investigated, and diversities in enzyme properties were found as a function of substrate. The deamination of the biogenic amines: serotonin, dopamine, tyramine, tryptamine, phenylethylamine and two non-physiological amines, kynuramine and m-iodobenzylamine, was studied. Anions in high concentrations inhibited enzyme activity with kynuramine being the substrate most affected. Among the biogenic amines, the activity with the indolalkylamines showed greater sensitivity to mono-valent anions such as chloride than to polyvalent ions such as phosphate whereas the opposite was true with the phenylalkylamines. However, pyrophosphate ion had little or no effect on MAO activity, regardless of substrate. The inhibition of kynuramine and serotonin deamination was non-competitive but mixed competitive inhibition was found with tyramine and phenylethylamine. The activity of MAO was markedly affected by pH, and it had been previously reported that the substrates showed different pH optima in their oxidation. The effect of pH on activity has been attributed in part to changes in the ionization of the substrate and the hypothesis that the true substrate is the non-protonated amine. This was reflected in kinetic studies showing high substrate inhibition with increased pH. It was calculated that phenylethylamine would have the highest percentage of un-ionized amine at pH 8.2 and 9.1. At these pHs, there was more pronounced inhibition with high substrate concentrations of phenylethylamine than with the other substrates. In contrast, there was little inhibition with high substrate concentrations of tyramine which was the most ionizable of the substrates tested. When Km values obtained at pH 7.4, 8.2 and 9.1 were corrected for ionization of the substrate, the corrected Km was lowest at pH 7.4 for all substrates. Less than 50% of MAO activity was lost when beef brain mitochondria was heated at 50°C for 20 min. However, there was only a slight variation with substrate in the thermal inactivation experiments. It is concluded that the mitochondrial membrane environment surrounding the enzyme imposes certain restrictions on the enzymatic activity with respect to the different substrates which, in turn, are also affected by such parameters as pH and ions. The results are discussed in terms of the relationship of these factors to the question of enzyme multiplicity.  相似文献   

3.
The genes for arylsulfatase (atsA) and tyramine oxidase (tynA) have been mapped in Klebsiella aerogenes by P1 transduction. They are linked to gdhD and trp in the order atsA-tynA-gdhD-trp-pyrF. Complementation analysis using F' episomes from Escherichia coli suggested an analogous location of these genes in E. coli, although arylsulfatase activity was not detected in E. coli. P1 phage and F' episomes were used to create intergeneric hybrid strains of enteric bacteria by transfer of the ats and tyn genes between K. aerogenes, E. coli, and Salmonella typhimurium. Intergeneric transduction of the tynK gene from K. aerogenes to an E. coli restrictionless strain was one to two orders less frequent than that of the leuK gene. The tyramine oxidase of E. coli and S. typhimurium in regulatory activity resemble very closely the enzyme of K. aerogenes. The atsE gene from E. coli was expressed, and latent arylsulfatase protein was formed in K. aerogenes and S typhimurium. The results of tyramine oxidase and arylsulfatase synthesis in intergeneric hybrids of enteric bacteria suggest that the system for regulation of enzyme synthesis is conserved more than the structure or function of enzyme protein during evolution.  相似文献   

4.
Kang S  Kang K  Lee K  Back K 《Plant cell reports》2007,26(11):2009-2015
Serotonin is a well-known pineal hormone that in mammals plays a key role in mood. In plants, serotonin is implicated in several physiological roles such as flowering, morphogenesis, and adaptation to environmental changes. However, its biosynthetic enzyme in plants has not been characterized. Therefore, we measured the serotonin content and enzyme activity responsible for serotonin biosynthesis in rice seedlings. Tryptamine 5-hydroxylase (T5H), which converts tryptamine into serotonin, was found as a soluble enzyme that had maximal activity in the roots. The maximal activity of T5H was closely associated with the enriched synthesis of serotonin in roots. Tetrahydropterine-dependent T5H activity was inhibited by tyramine, tryptophan, 5-OH-tryptophan, and octopamine, but remained unaltered by dopamine in vitro. The tissues of rice seedlings grown in the presence of tryptamine exhibited a dose-dependent increase in serotonin in parallel with enhanced T5H enzyme activity. However, no significant increase in serotonin was observed in rice tissues grown in the presence of tryptophan, suggesting that tryptamine is a bottleneck intermediate substrate for serotonin synthesis.  相似文献   

5.
When a mutant (Mao(-)) of Klebsiella aerogenes lacking an enzyme for tyramine degradation (monoamine oxidase) was grown with d-xylose as a carbon source, arylsulfatase was repressed by inorganic sulfate and repression was relieved by tyramine. When the cells were grown on glucose, tyramine failed to derepress the arylsulfatase synthesis. When grown with methionine as the sole sulfur source, the enzyme was synthesized irrespective of the carbon source used. Addition of cyclic adenosine monophosphate overcame the catabolite repression of synthesis of the derepressed enzyme caused by tyramine. Uptake of tyramine was not affected by the carbon source. We isolated a mutant strain in which derepression of arylsulfatase synthesis by tyramine occurred even in the presence of glucose and inorganic sulfate. This strain also produced beta-galactosidase in the presence of an inducer and glucose. These results, and those on other mutant strains in which tyramine cannot derepress enzyme synthesis, strongly suggest that a protein factor regulated by catabolite repression is involved in the derepression of arylsulfatase synthesis by tyramine.  相似文献   

6.
Approximately 25 and 40%, respectively, of murine (Mus musculus) and rat (Rattus norvegicus) hepatic arylsulfatase (EC 3.1.6.1) activity eluted from DEAE-ion exchange resins under high salt conditions. This high salt fraction contained arylsulfatase A and an enzyme which was immunologically similar to arylsulfatase B. The latter enzyme was thermostable, resistant to inhibition by silver, completely inhibited by phosphate, displayed linear kinetics, and had a higher pH optimum than arylsulfatase A. Anionic arylsulfatase B also hydrolyzed chondroitin-4-SO4 heptasaccharide. Sephacryl S-300 gel filtration resolved anionic arylsulfatase B into 55 and 115 kd fractions. Rodent arylsulfatase A activity was grossly underestimated when 4-methyl-umbelliferyl sulfate was employed as substrate.  相似文献   

7.
Arylsulfatase synthesis was shown to occur in Salmonella typhimurium LT2. The enzyme had a molecular weight of approximately 50,000 and was separated into five forms by isoelectrofocusing. The optimal pH for substrate hydrolysis was pH 6.7, with Michaelis constants for nitrocatechol sulfate and nitrophenyl sulfate being 4.1 and 7.9 mM, respectively. Enzyme synthesis was strongly influenced by the presence of tyramine in the growth medium. The uptake of [14C]tyramine and arylsulfatase synthesis were initiated during the second phase of a diauxie growth response, when the organism was cultured with different carbon sources. Adenosine 3',5'-cyclic monophosphoric acid enhanced the uptake of tyramine and the levels of arylsulfatase synthesized. However, the addition of glucose and glycerol to organisms actively transporting tyramine and synthesizing enzyme caused a rapid inhibition of both of these processes. This inhibition was not reversed by adding adenosine 3',5'-cyclic monophosphoric acid. The results suggest that the effect of the carbon source on tyramine transport and arylsulfatase synthesis may be explained in terms of inducer exclusion.  相似文献   

8.
We compared the inhibitory and catalytic effects of various monoamines on forms A and B of monoamine oxidase (MAO) on mitochondrial preparations from rat brain in mixed substrate experiments. MAO activity was determined by a radioisotopic assay. MAO showed lower Km values for tryptamine and β-phenylethylamine than for tyramine and serotonin. The Km values of the untreated preparation for tyramine, tryptamine, and β-phenylethylamine obtained were the same as those of the form B enzyme and the Km value for serotonin was the same as that of the form A enzyme. Tyramine and tryptamine were competitive inhibitors of serotonin oxidation and β-phenylethylamine did not bind with form A enzyme or inhibit the oxidation of serotonin, while tyramine and tryptamine were competitive inhibitors of β-phenylethylamine oxidation. Although serotonin was not oxidized by form B enzyme, serotonin was a competitive inhibitor of β-phenylethylamine oxidation. It is suggested that rat brain mitochondrial MAO is characterized by two kinds of binding sites.  相似文献   

9.
It has been shown for the first time that biogenic amines (catecholamines and tryptophane derivatives) stimulate dose-dependently activity of adenylyl cyclase (AC) and GTP-binding of G-proteins in muscle of the cutaneous-muscle bag of the earthworm Lumbricus terrestris. By efficiency of their stimulating action on the AC activity, biogenic amines can be arranged in the following sequence: octopamine > tyramine > tryptamine = serotonin > dopamine > isoproterenol = adrenalin. The sequence of efficiency of their action on GTP-binding is somewhat different: serotonin > tryptamine > octopamine > dopamine = tyramine > adrenaline > isoproterenol. Sensitivity of AC and G-proteins in the worm muscle to biogenic amines is similar with that in smooth muscle of the molluse Anodonta cygnea (invertebrates), but differs markedly by this parameter from the rat myocardium (vertebrates). It has also been revealed that AC in the worm muscle is regulated by peptide hormones relaxin and somatostatin whose action is comparable with that in the mollusk muscle, but much weaker that the action of these hormones on the rat myocardium AC activity. Use of C-terminal peptides of alpha-subunits of G-proteins of the stimulatory (385-394 Galpha(s)) and inhibitory (346-355 Galpha(i2)) types that disrupt selectively the hormonal signal transduction realized via G(s)- and G(i)-proteins, respectively, allowed establishing that the AC-stimulating effects of relaxin, octopamine, tyramine, and dopamine in the worm muscle are realized via the receptors coupled functionally with G(s)-protein; the AC-inhibiting effect of somatostatin is realized via the receptor coupled with G(i)-protein, whereas serotonin and tryptamine activate both types of G-proteins.  相似文献   

10.
It has been shown for the first time that biogenic amines (catecholamines and tryptophane derivatives) stimulate dose-dependently activity of adenylyl cyclase (AC) and GTP-binding of G-proteins in muscle of the skin-muscle sac of the earthworm Lumbricus terrestris. By efficiency of their stimulating action on the AC activity, biogenic amines can be arranged in the following sequence: octopamine > tyramine > tryptamine ≈ serotonin > dopamine > isoproterenol ≈ adrenalin. The sequence of efficiency of their action on GTP-binding is somewhat different: serotonin > tryptamine > octopamine > dopamine ≈ tyramine > adrenaline > isoproterenol. Sensitivity of AC and G-proteins in the worm muscle to biogenic amines is similar with that in smooth muscle of the mollusc Anodonta cygnea (invertebrates), but differs markedly by this parameter from the rat myocardium (vertebrates). It has also been revealed that AC in the worm muscle is regulated by peptide hormones, relaxin and somatostatin, whose action is comparable with that in the mollusc muscle, but much weaker that the action of these hormones on the rat myocardium AC activity. Use of Cterminal peptides of α-subunits of G-proteins of the stimulatory (385–394 Gαs) and inhibitory (346–355 Gαi2) types that disrupt selectively the hormonal signal transduction realized via Gsand Giproteins, respectively, allowed establishing that the AC-stimulating effects of relaxin, octopamine, tyramine, and dopamine in the worm muscle are realized via the receptors coupled functionally with Gs-protein; the AC-inhibiting effect of somatostatin is realized via the receptor coupled with Gi-protein, whereas serotonin and tryptamine activate both types of G-proteins.  相似文献   

11.
The participation of tyramine oxidase in the regulation of arylsulfatase synthesis in Salmonella typhimurium was studied. Arylsulfatase synthesis was repressed by inorganic sulfate, cysteine, methionine, or taurine. This repression was relieved by tyramine, octopamine, or dopamine, which induced tyramine oxidase synthesis, although the level of arylsulfatase activity was very low. The induction of tyramine oxidase and derepression of arylsulfatase by tyramine were strongly inhibited by glucose and ammonium chloride, and the repression of both enzymes was relieved by use of xylose as a carbon source after consumption of glucose or by use of tyramine as the sole source of nitrogen, irrespective of the carbon source used. The initial rates of tyramine uptake by cells grown with glucose and xylose were similar. Results with tyramine oxidase-constitutive mutants showed that constitutive expression of the tyramine oxidase gene resulted in derepression of arylsulfatase synthesis in the absence of tyramine. Thus, catabolite and ammonium repressions of arylsulfatase synthesis and the induction of the enzyme by tyramine seem to reflect the levels of tyramine oxidase synthesis. These results in S. typhimurium support our previous finding that the specific regulation system of arylsulfatase synthesis by tyramine oxidase is conserved in enteric bacteria.  相似文献   

12.
Abstract— Six endogenous substrates of monoamine oxidase (EC 1.4.3.4) (serotonin, l -norepinephrine, dopamine, tyramine, tryptamine and β -phenethylamine) were used separately and in pairs with human brain mitochondrial extracts. Apparent K 1 values were obtained from experiments in which only 1 of 2 substrates was isotopically labelled, and these values were compared with experimental K m values. β -Phenethylamine appears to be metabolized at enzyme active sites independent from those which bind serotonin. The substrate l -norepinephrine competes with serotonin for an enzyme site, but also may be catalysed at an additional site which is independent of serotonin binding. Experiments in which [14C]tryptamine was combined with [3E]serotonin indicated that tryptamine is a much more potent inhibitor of serotonin oxidation than was predicted from K m values. It is suggested that the competition among substrates of MA0 which is observed in uitro may have relevance to in uiuo mechanisms for control of biogenic amine concentrations.  相似文献   

13.
Regulation of cellular arylsulfatase synthesis in Klebsiella aerogenes was analyzed by immunological techniques. Antibody directed against the purified arylsulfatase from K. aerogenes W70 was obtained from rabbits and characterized by immunoelectrophoresis, double-diffusion, quantitative precipitation, and enzyme neutralization tests. Arylsulfatase was located in the periplasmic space when the wild-type strain was cultured with methionine or with inorganic sulfate plus tyramine, but not with inorganic sulfate without tyramine, as the sole sulfur source. Tyramine oxidase was retained in the membrane fraction prepared from cells grown in the presence of tyramine. Arylsulfatase protein was not synthesized in the presence of tyramine and inorganic sulfate by mutant K611, which is deficient in tyramine oxidase (tynA). We conclude that the expression of the arylsulfatase gene (atsA) is regulated by the expression of tynA and that inorganic sulfate serves as a corepressor. In addition, strains mutated in the atsA gene were analyzed by using antibody.  相似文献   

14.
The arylsulfatases of 21 strains of the family Enterobacteriaceae were compared by measuring their enzymatic activities and immunological reactivities. Enzyme formation under repressing, nonrepressing, and derepressing conditions was tested. Antiserum prepared against pure arylsulfatase from Klebsiella aerobgenes W70 was tested against the enzyme extracts from the strains using double diffusion, quantitative precipitation, and immunoelectrophoresis. No close relationship was found between arylsulfatase activity and immunological cross-reactionship was found between arylsulfatase activity and immunological cross-reactivity. The strains in the family Enterobacteriaceae could be divided into two groups on the basis of the immunological properties of their enzyme. Antisera formed a precipitin band with both active and inactive enzyme proteins from Escherichia, Citrobacter, Salmonella, Klebsiella, and Enterobacter, but not with the proteins from Serratia, Proteus, and Erwinia, even though some strains of these species had enzyme activity. It was also found that the formation of arylsulfatase proteins, irrespective of whether they had enzyme activity, were under regulation by sulfur compounds and tyramine.  相似文献   

15.
Pseudomonas aeruginosa PAO1 was able to utilize several aromatic biogenic amines as sole sources of carbon or nitrogen. These included the phenethylamines tyramine and dopamine and the phenethanolamines octopamine, synephrine, and norepinephrine. Initial catabolism of the phenethylamines was mediated by a membrane-bound tyramine dehydrogenase which produced 4-hydroxyphenylacetaldehyde (4HPAL) with tyramine as the substrate. The enzyme was induced by growth with both classes of amines. Initial catabolism of octopamine (except when present as the sole source of carbon and nitrogen) was mediated by a soluble enzyme with activity against the phenethanolamines but not against tyramine or dopamine. The product of the reaction with octopamine as substrate was also 4HPAL. Addition of NAD to reaction mixtures yielded 4-hydroxyphenylacetic acid and NADH. These activities, octopamine hydrolyase and 4-HPAL dehydrogenase (measured as a combined activity, OCAH-4HPALDH), were only induced by growth with phenethanolamines. However, the combined activities were not observed in extracts from cells grown with octopamine as the sole source of carbon and nitrogen, suggesting that an alternate pathway is used under this growth condition. Two independently isolated mutant strains were unable to utilize tyramine as a sole source of carbon or nitrogen. These mutants were also unable to utilize dopamine but grew at wild-type rates on the phenethanolamines. The mutations were mapped at about 70 min on the PAO1 chromosome with the chromosome-mobilizing plasmid R68.45, and both were linked to the catA1, mtu-9002, tyu-9009, and puuE mutations. DNA complementing both of the mutations was cloned on a single BamHI fragment approximately 13.8 kilobase pairs in length. Analysis of a subcloned fragment showed that the two mutations were in different genes.  相似文献   

16.
Strains with lac fused to each of the arylsulfatase (ats) and tyramine oxidase (tyn) operons in Escherichia coli were isolated. Synthesis of β-galactosidase in strains with tyn:: lac fusions was induced by tyramine, histamine, tryptamine, dopamine and octopamine, and the induction of the tyn operon was subject to catabolite and ammonium repressions. These repressions were relieved when the cells were grown with a poor carbon or nitrogen source. No arylsulfatase activity is detected in E. coli strains. Synthesis of β-galactosidase in strains with ats:: lac fusions was repressed by sulfur compounds. The repression was relieved by monoamine compounds, which induced tyramine oxidase synthesis. The inhibition of tyramine oxidase activity by cysteine resulted in a decrease of the derepressed synthesis of β-galactosidase in the ats:: lac fusion. Repressing and derepressing conditions for the tyn operon prevented and stimulated, respectively, expression of the ats operon. Thus, the expression of latent arylsulfatase in E. coli seems to be regulated by expression of the tyn operon.  相似文献   

17.
Deacetylipecoside synthase (DIS), the enzyme catalyzing the condensation of dopamine and secologanin to form the (R)-epimer of deacetylipecoside, has been purified 570-fold from the leaves of Alangium lamarckii and partially characterized. The isolated enzyme is a single polypeptide with Mr 30,000, and has a pH optimum at 7.5 and a temperature optimum at 45 degrees C. The apparent Km values for dopamine and secologanin are 0.7 and 0.9 mM, respectively. DIS exhibits high substrate specificity toward dopamine, whereas neither tyramine nor tryptamine are utilized. The enzyme activity is not inhibited by its substrate dopamine, but is inhibited by alangimakine and dehydroalangimakine with similar I50 values of 10 microM. DIS presumably provides (R)-deacetylipecoside for the formation of tetrahydroisoquinoline monoterpene glucosides that also possess an (R)-configuration at the same chiral center.  相似文献   

18.
Effects of progressive starvation of 12, 24, 48 and 60 h upon brain mitochondrial monoamine oxidase activity were studied. The enzyme activity was determined by three different substrates: 14C-labeled tryptamine, dopamine and kynuramine. With dopamin as substrate, the enzyme activity showed decline during 24 and 48 h starvation. Monoamine oxidase when determined by tryptamine as the substrate, showed a decreased after 60 h of starvation. The use of kynuramine as substrate also produced a decrease in enzyme activity after 48 and 60 h of starvation. Refeeding the 60-h-starved rats for the following 24 h resulted in further decrease of monoamine oxidase activity of brain mitochondria from the 60 h starved values. The results suggest that oxidative deamination of biogenic amines is greatly inhibited during progressive starvation and remains low even after feeding the 60 h starved rats for 24 h.  相似文献   

19.
Dependence on the salt concentration of the activity of microsome-bound arylsulfatase C [EC 3.1.6.1] from rat liver was examined. The activity increased with increasing salt concentration in the reaction medium in the whole pH range tested. This effect can be explained by the dependence of the reaction rate on the surface pH and the surface concentration of the ionic substrate. The dependence on salt concentration of the activity of the microsome-bound arylsulfatase C and the pH-dependences of Vmax and Km of the enzyme were used for the estimation of pH at the microsomal surface. The two values of the surface pH (surface potential) and the salt concentration were applied to the Gouy-Chapman equation. The value of -0.39 +/- 0.08 X 10(-3) elementary charge/A2 was obtained as the surface charge density in the vicinity of the microsome-bound arylsulfatase C. This was smaller than the over-all value for microsomes (-1.08 +/- 0.04 X 10(-3) elementary charge/A2; Masamoto, K. (1982) J. Biochem. 92, 365-371). This suggests that the anion concentration in the vicinity of the enzyme on microsomes is lower than that in the bulk aqueous phase and is higher than the average value at the microsomal surface when the salt concentration is low.  相似文献   

20.
A staining reaction was developed to specifically detect arylsulfatase A activity in the presence of arylsulfatases B and C. Nitrocatechol, generated by all arylsulfatases from the substrate p-nitrocatechol sulfate, can be coupled to produce Hatchett 's brown which reacts with 3,3'-diaminobenzidine to yield an osmiophilic polymer visible under the electron microscope. The reaction was made specific for arylsulfatase A by inhibiting arylsulfatase C activity with low pH and arylsulfatase B activity with pyrophosphate. The specificity was confirmed both by electrophoretic analysis and by patient fibroblasts deficient only in arylsulfatase A activity. Under optimal conditions for preserving structural integrity and enzyme activity, enzyme reaction deposits were found mainly around vesicles. Some of these vesicles were large and heterogeneous (48-330 nm in diameter), distributed randomly within the cytoplasm, but most of the positive-reacting vesicles were uniform in size (86 +/- 18 nm in diameter) and distributed in a peripheral zone about 0.1-0.5 micron wide. These periplasmic vesicles might be partly fused with each other or with the plasma membrane. In conclusion, a specific stain for arylsulfatase A activity suitable for light and electron microscopy and the optimal conditions for structural and enzymatic preservations were developed. Although this enzyme has been considered to be lysosomal in origin, most of the activity was detected in periplasmic vesicles near the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号