首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral alcohols are valuable as diverse chemicals and synthetic intermediate materials. Phenylacetaldehyde reductase (PAR) is an enzyme that converts a wide variety of ketones into chiral alcohols with high optical purity. When an alcohol such as 2-propanol is used as a hydrogen donor, PAR itself will also mediate the regeneration of the coenzyme NADH in situ. Perceiving a capacity for improvement, we sought to develop a PAR that is able to convert higher concentrations of substrates in the presence of high concentrations of 2-propanol. The selection procedure for mutants was re-examined and a procedure able to select an effective amino acid substitution was established. Two advantageous amino acid substitutions were successfully selected using the procedure. When high-concentration substrate conversion reaction was subjected with a mutant that integrated both the two amino acid substitutions, near-complete conversions of m-chlorophenacyl chloride (m-CPC) (2.1 mmol/ml) and ethyl 4-chloro-3-oxobutanoate (ECOB) (1.9 mmol/ml) were achieved.  相似文献   

2.
We describe an efficient method for producing both enantiomers of chiral alcohols by asymmetric hydrogen-transfer bioreduction of ketones in a 2-propanol (IPA)–water medium with E. coli biocatalysts expressing phenylacetaldehyde reductase (PAR: wild-type and mutant enzymes) from Rhodococcus sp. ST-10 and alcohol dehydrogenase from Leifsonia sp. S749 (LSADH). We also describe the detailed properties of mutant PARs, Sar268, and HAR1, which were engineered to have high activity and productivity in media composed of polar organic solvent and water, and the construction of three-dimensional structure of PAR by homology modeling. The K m and V max values for some substrates and the substrate specificity of mutant PARs were quite different from those of wild-type PAR. The results well explained the increased productivity of engineered PARs in IPA–water medium.  相似文献   

3.
Phenylacetaldehyde reductase (PAR) is suitable for the conversion of various aryl ketones and 2-alkanones to corresponding chiral alcohols. 2-Propanol acts as a substrate solvent and hydrogen donor of coupled cofactor regeneration during the conversion of substrates catalyzed by PAR. To improve the conversion efficiency in high concentrations of substrate and 2-propanol, selection of a PAR mutant library and the subsequent rearrangement of mutations were attempted. With only a single selection round and following the manual combination of advantageous mutations, PAR was successfully adapted for the conversion of high concentrations of substrate with concentrated 2-propanol. This method will be widely applicable for the engineering of enzymes potentially valuable for industry.  相似文献   

4.
Phenylacetaldehyde reductase (PAR) is suitable for the conversion of various aryl ketones and 2-alkanones to corresponding chiral alcohols. 2-Propanol acts as a substrate solvent and hydrogen donor of coupled cofactor regeneration during the conversion of substrates catalyzed by PAR. To improve the conversion efficiency in high concentrations of substrate and 2-propanol, selection of a PAR mutant library and the subsequent rearrangement of mutations were attempted. With only a single selection round and following the manual combination of advantageous mutations, PAR was successfully adapted for the conversion of high concentrations of substrate with concentrated 2-propanol. This method will be widely applicable for the engineering of enzymes potentially valuable for industry.  相似文献   

5.
Phenylacetaldehyde reductase (PAR) with a unique and wide substrate range from styrene-assimilating Corynebacterium sp. strain ST-10, which is a useful biocatalyst producing chiral alcohols, has been found to belong to a family of zinc-containing, long-chain alcohol dehydrogenases (ADHs) on the basis of the primary structure similarity. The enzyme contains 2 moles of zinc per mole of subunit. The amino acid residues assumed to be three catalytic and four structural zinc-binding ligands were characterized by site-directed mutagenesis, compared with other zinc-containing, long-chain ADHs. Sixteen PAR mutants gave measurable but rather low activities toward phenylacetaldehyde, n-hexyl aldehyde, and 2-heptanone, although they maintained the activities of 8 to 16% of that of wild-type PAR for an acetophenone substrate except that the D153N mutant showed quite low activity. The results suggested that the seven residues present in PAR were probably zinc-binding ligands, and mutation in these residues caused a change in activities for some substrates.  相似文献   

6.
Alcohol dehydrogenase (ADH) and amine dehydrogenase (AmDH)-catalyzed one-pot cascade conversion of an alcohol to an amine provides a simple preparation of chiral amines. To enhance the cofactor recycling in this reaction, we report a new concept of coupling whole-cells with the cell-free system to enable separated intracellular and extracellular cofactor regeneration and recycling. This was demonstrated by the respective biotransformation of racemic 4-phenyl-2-butanol 1a and 1-phenyl-2-propanol 1b to (R)-4-phenylbutan-2-amine 3a and (R)-1-phenylpropan-2-amine 3b . Escherichia coli cells expressing S-enantioselective CpsADH, R-enantioselective PfODH, and NADH oxidase (NOX) was developed to oxidize racemic alcohols 1a–b to ketones 2a–b with full conversion via intracellular NAD+ recycling. AmDH and glucose dehydrogenase (GDH) were used to convert ketones 2a–b to amines (R)- 3a–b with 89–94% conversion and 891–943 times recycling of NADH. Combining the cells and enzymes for the cascade transformation of racemic alcohols 1a–b gave 70% and 48% conversion to the amines (R)- 3a and (R)-3 b in 99% ee, with a total turnover number (TTN) of 350 and 240 for NADH recycling, respectively. Improved results were obtained by using the E. coli cells with immobilized AmDH and GDH: (R)- 3a was produced in 99% ee with 71–84% conversion and a TTN of 1410-1260 for NADH recycling, the highest value so far for the ADH–AmDH-catalyzed cascade conversion of alcohols to amines. The concept might be generally applicable to this type of reactions.  相似文献   

7.
Phenylacetaldehyde reductase (PAR) (systematic name, 2-phenylethanol: NAD+ oxidoreductase) isolated from styrene-assimilating Corynebacterium strain ST-10 was used to produce chiral alcohols. This enzyme with a broad substrate range reduced various prochiral 2-alkanones and aromatic ketones to yield optically active secondary alcohols with an enantiomeric purity of 87–100% enantiomeric excess (e.e.). The stereochemistry of PAR revealed that the pro-R hydrogen of NADH was transferred to carbonyl moiety of acetophenone derivatives or alkanones through its re face. The combination with a NADH-regenerating system using formate dehydrogenase and formate was able to practically produce optically pure alcohols.  相似文献   

8.
The gene encoding phenylacetaldehyde reductase (PAR), a useful biocatalyst for producing chiral alcohols, was cloned from the genomic DNA of the styrene-assimilating Corynebacterium sp. strain ST-10. The gene contained an opening reading frame consisting of 1,158 nucleotides corresponding to 385 amino acid residues. The subunit molecular weight was calculated to be 40,299, which was in agreement with that determined by polyacrylamide gel electrophoresis. The enzyme was sufficiently expressed in recombinant Escherichia coli cells for practical use and purified to homogeneity by three-column chromatography steps. The predicted amino acid sequence displayed only 20–29% identity with zinc-containing, NAD+-dependent, long-chain alcohol dehydrogenases. Nevertheless, the probable NAD+- and zinc-binding sites are conserved although one of the three catalytic zinc-binding residues of the zinc-containing, long-chain alcohol dehydrogenases was substituted by Asp in PAR. The protein contains 7.6 mol zinc/mol tetramer. Therefore, the enzyme was considered as a new member of zinc-containing, long-chain alcohol dehydrogenases with a particular and broad substrate specificity. Received: 5 March 1999 / Received last revision: 10 May 1999 / Accepted: 16 May 1999  相似文献   

9.
Chiral aromatic alcohols have received much attention due to their widespread use in pharmaceutical industries. In the asymmetric synthesis processes, the excellent performance of alcohol dehydrogenase makes it a good choice for biocatalysts. In this study, a novel and robust medium-chain alcohol dehydrogenase RhADH from Rhodococcus R6 was discovered and used to catalyse the asymmetric reduction of aromatic ketones to chiral aromatic alcohols. The reduction of 2-hydroxyacetophenone (2-HAP) to (R)-(-)-1-phenyl-1,2-ethanediol ((R)-PED) was chosen as a template to evaluate its catalytic activity. A specific activity of 110 U mg−1 and a 99% purity of e.e. was achieved in the presence of NADH. An efficient bienzyme-coupled catalytic system (RhADH and formate dehydrogenase, CpFDH) was established using a two-phase strategy (dibutyl phthalate and buffer), which highly raised the tolerated substrate concentration (60 g l−1). Besides, a broad range of aromatic ketones were enantioselectively reduced to the corresponding chiral alcohols by this enzyme system with highly enantioselectivity. This system is of the potential to be applied at a commercial scale.  相似文献   

10.
The asymmetric reduction of ketones is one of the most promising processes for producing chiral alcohols. However, dehydrogenases or reductases that can catalyze the reduction of ketones to give anti-Prelog chiral alcohols have been limited to some NADP+/NADPH-dependent enzymes. Recently, we reported a novel NAD+/NADH-dependent alcohol dehydrogenase (ADH) from Leifsonia sp. and Pseudomonas ADH homologs from soil metagenomes. Moreover, we have established an efficient hydrogen-transfer bioreduction process with 2-propanol as a hydrogen donor using Leifsonia ADH. This review focuses on the recent development of novel ADHs for producing industrially useful anti-Prelog chiral alcohols from various ketones.  相似文献   

11.
The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180–200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.  相似文献   

12.
Phenylacetaldehyde reductase (PAR) with a unique and wide substrate range from styrene-assimilating Corynebacterium sp. strain ST-10, which is a useful biocatalyst producing chiral alcohols, has been found to belong to a family of zinc-containing, long-chain alcohol dehydrogenases (ADHs) on the basis of the primary structure similarity. The enzyme contains 2 moles of zinc per mole of subunit. The amino acid residues assumed to be three catalytic and four structural zinc-binding ligands were characterized by site-directed mutagenesis, compared with other zinc-containing, long-chain ADHs. Sixteen PAR mutants gave measurable but rather low activities toward phenylacetaldehyde, n-hexyl aldehyde, and 2-heptanone, although they maintained the activities of 8 to 16% of that of wild-type PAR for an acetophenone substrate except that the D153N mutant showed quite low activity. The results suggested that the seven residues present in PAR were probably zinc-binding ligands, and mutation in these residues caused a change in activities for some substrates.  相似文献   

13.
Practical uses of a novel alcohol dehydrogenase from Thermoanaerobium brockii have been examined in crude and purified form. Stoichiometric reduction of NADP (50 mg) was demonstrated with agarose-immobilized enzyme and 0.3 (v/v) 2-propanol solution as reductant. A coenzyme recycle number of 20000 was achieved in enzymatic reactions that employed the alcohol dehydrogenase for NADPH/NADP regeneration. Gram-scale synthesis of chiral R(+) 2-pentanol was shown in a system composed of enzyme, 2-pentanone and 2-propanol as reductant. The effect of temperature, reaction time and substrate concentration on alcohol optical purity was examined. An optical purity of 80% was achieved in the enzymatic synthesis of R(+) 2-pentanol. The enzyme was easily immobilized and stable on an enzyme electrode for analytical detection of alcohols and carbonyls. T. brockii enzyme has potential applications as a commercial alcohol dehydrogenase because of broad substrate specificity and activity at high temperature or high solvent concentration, rare carbonyl si-face stereo-specificity in hydrogen transfer, and high stability and activation of immobilized enzyme.  相似文献   

14.
Phenylacetaldehyde reductase (PAR) produced by styrene-assimilating Corynebacterium strain ST-10 was used to synthesize chiral alcohols. This enzyme with a broad substrate range reduced various prochiral aromatic ketones and beta-ketoesters to yield optically active secondary alcohols with an enantiomeric purity of more than 98% enantiomeric excess (e.e.). The Escherichia coli recombinant cells which expressed the par gene could efficiently produce important pharmaceutical intermediates; (R)-2-chloro-1-(3-chlorophenyl)ethanol (28 mg.mL-1) from m-chlorophenacyl chloride, ethyl (R)-4-chloro-3-hydroxy butanoate) (28 mg.mL-1) from ethyl 4-chloro-3-oxobutanoate and (S)-N-tert-butoxycarbonyl(Boc)-3-pyrrolidinol from N-Boc-3-pyrrolidinone (51 mg.mL-1), with more than 86% yields. The high yields were due to the fact that PAR could concomitantly reproduce NADH in the presence of 3-7% (v/v) 2-propanol in the reaction mixture. This biocatalytic process provided one of the best asymmetric reductions ever reported.  相似文献   

15.
We purified two isozymes of coniferyl alcohol dehydrogenase (CADH I and II) to homogeneity from cell-free extracts of Streptomyces sp. NL15-2K. The apparent molecular masses of CADH I and II were determined to be 143 kDa and 151 kDa respectively by gel filtration, whereas their subunit molecular masses were determined to be 35,782.2 Da and 37,597.7 Da respectively by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Thus, it is probable that both isozymes are tetramers. The optimum pH and temperature for coniferyl alcohol dehydrogenase activity were pH 9.5 and 45 °C for CADH I and pH 8.5 and 40 °C for CADH II. CADH I oxidized various aromatic alcohols and allyl alcohol, and was most efficient on cinnamyl alcohol, whereas CADH II exhibited high substrate specificity for coniferyl alcohol, and showed no activity as to the other alcohols, except for cinnamyl alcohol and 3-(4-hydroxy-3-methoxyphenyl)-1-propanol. In the presence of NADH, CADH I and II reduced cinnamaldehyde and coniferyl aldehyde respectively to the corresponding alcohols.  相似文献   

16.
A new nicotinamide cofactor-dependent alcohol dehydrogenase from Pseudomonas strain SBD6 (PADH) was isolated and purified 150-fold to homogeneity using a combination of salt precipitation, anion-exchange chromatography, gel filtration chromatography, and dye matrix chromatography. Approximately 10 mg of pure enzyme can be obtained from 10 g of wet cells. The enzyme has four subunits with a total molecular weight of 162,000. Incubation with the metal chelators 1,10-phenanthroline, 2-aminoethanethiol, hydroxyquinolinesulfonic acid, N-ethylmaleimide, and potassium cyanide result in complete loss of activity. The enzyme is very stable (t1/2 7 days at pH 7 and 25°C in the absence of 2-propanol and 18 days in the presence of 10% 2-propanol, v/v) and possesses a broad substrate specificity with transfer of the pro-(R) hydride from NADH to the si face of carbonyl substrates to give (R)-alcohols in high enantiomeric excess, a stereochemical process different from that of other known alcohol dehydrogenases. Synthetic scale reductions are facilitated with 2-propanol as a hydride source for the regeneration of NADH. The kinetic mechanism is ordered bi-bi with the cofactor binding first. Based on NAD and 2-propanol, the kinetic parameters of the enzyme were determined to be Vmax = 29.9 Units mg−1 at 25°C and pH 8.5, KmNAD = 0.36 m and Km2-propanol = 0.19 m .  相似文献   

17.
A mutant of the thermostable NAD+-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp → Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD+ and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 Å resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.  相似文献   

18.
An alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (PFADH) effectively catalyzed the reductions of various substituted α-chloroacetophenones to furnish the corresponding (R)-configurated α-chlorohydrins with excellent enantiomeric purity. The co-factor NADH could be recycled with d-glucose dehydrogenase/d-glucose system or in a coupled substrate approach using iso-propanol as the hydrogen donor. The hydrogen transfer mode should be more cost-effective. Thus, the PFADH-catalyzed hydrogen transfer reductions of some substrates were carried out on the preparative scale, demonstrating that this enzyme would be a valuable biocatalyst for the preparation of chiral chlorohydrins of pharmaceutical interest.  相似文献   

19.
Catalysis of the thermostable alcohol dehydrogenase from Bacillus stearothermophilus is performed by a proton release system involving a zinc-bound water molecule, a hydroxyl group of Thr40 (threonine position at 40), and an imidazole ring of His43. Amino acid residues (Thr40 and His43) at the active center were substituted by Ser and Arg, respectively. Thr40Ser had a tendency toward lower activity for primary alcohols than the wild type enzyme. However, the mutant enzyme became more active for substrates with a larger side chain, such as 2-methyl-1-propanol and cyclohexanol. This phenomena might be explained by the fact that the methyl group of Thr40 was eliminated in Ser. His43Arg exhibited higher activity to primary alcohols (except 2-methyl-1-propanol) and acetaldehyde (as a reverse reaction) than the wild type, but little activity for secondary alcohols and ketones. The Km value for ethanol (Km-e) of His43Arg was fifty-fold larger than that of the wild type. The characteristics of these mutant enzymes are also discussed.  相似文献   

20.
Mäder M  Füssl R 《Plant physiology》1982,70(4):1132-1134
Coniferyl alcohol is the primary substrate for peroxidase-mediated lignification, a process which depends on the generation of H2O2 by NADH oxidation. We measured the concentrations of various phenols (synthetic and natural) at which maximal enhancement of NADH oxidation occurs. Coniferyl alcohol was found to stimulate NADH oxidation at a much lower concentration (0.01 mm) than other natural or synthetic phenols (1-100 mm). In addition, coniferyl alcohol prevented the conversion of active peroxidase into the inactive intermediate compound III—which is usually formed in the presence of NADH—at equally low concentrations. This conversion was found to be a prerequisite for stimulation of NADH-oxidation, but it was not necessarily connected to stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号