首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lam N  Sugden B 《The EMBO journal》2003,22(12):3027-3038
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded, ligand-independent receptor that mimics CD40. We report here that LMP1 signals principally from intracellular compartments. LMP1 associates simultaneously with lipid rafts and with its signaling molecules, tumor necrosis factor-receptor (TNF-R)-associated factors (TRAFs) and TNF-R1-associated death domain protein (TRADD) intracellularly, although it can be detected at low levels at the plasma membrane, indicating that most of LMP1's signaling complex resides in intracellular compartments. LMP1's signaling is independent of its accumulation at the plasma membrane in different cells, and as demonstrated by a mutant of LMP1 which has significantly reduced localization at the plasma membrane yet signals as efficiently as does wild-type LMP1. The fusion of the transmembrane domain of LMP1 to signaling domains of CD40, TNF-R1 and Fas activates their signaling; we demonstrate that a fusion of LMP1 with CD40 recruits TRAF2 intracellularly. Our results imply that members of the TNF-R family can signal from intracellular compartments containing lipid rafts and may do so when they act in autocrine loops.  相似文献   

2.
The myxoma virus tumor necrosis factor (TNF) receptor homolog, M-T2, is expressed both as a secreted glycoprotein that inhibits the cytolytic activity of rabbit TNF-alpha and as an endoglycosidase H-sensitive intracellular species that prevents myxoma virus-infected CD4+ T lymphocytes from undergoing apoptosis. To compare the domains of M-T2 mediating extracellular TNF inhibition and intracellular apoptosis inhibition, recombinant myxoma viruses expressing nested C-terminal truncations of M-T2 protein were constructed. One mutant, deltaL113, containing intact copies of only two cysteine-rich domains, was not secreted and was incapable of binding rabbit TNF-alpha yet retained full ability to inhibit virus-induced apoptosis of RL-5 cells. Thus, the minimal domain of intracellular M-T2 protein required to inhibit apoptosis is distinct from that required by the extracellular M-T2 for functional TNF-alpha binding and inhibition. This is the first report of a virus-encoded immunomodular protein with two distinct antiimmune properties.  相似文献   

3.
Several phage-encoded peptidoglycan hydrolases have been found to share a conserved amidase domain with a variety of bacterial autolysins (N-acetylmuramoyl-L-alanine amidases), bacterial and eukaryotic glutathionylspermidine amidases, gamma-D-glutamyl-L-diamino acid endopeptidase and NLP/P60 family proteins. All these proteins contain conserved cysteine and histidine residues and hydrolyze gamma-glutamyl-containing substrates. These cysteine residues have been shown to be essential for activity of several of these amidases and their thiol groups apparently function as the nucleophiles in the catalytic mechanisms of all enzymes containing this domain. The CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) superfamily includes a variety of previously uncharacterized proteins, including the tail assembly protein K of phage lambda. Some members of this superfamily are important surface antigens in pathogenic bacteria and might represent drug and/or vaccine targets.  相似文献   

4.
B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R.  相似文献   

5.
The Class A family of guanine nucleotide-binding protein (G protein)-coupled receptors that includes receptors for motilin, ghrelin, and growth hormone secretagogue (GHS) has substantial potential importance as drug targets. Understanding of the molecular basis of hormone binding and receptor activation should provide insights helpful in the development of such drugs. We previously reported that Cys residues and the perimembranous residues in the extracellular loops and amino-terminal tail of the motilin receptor are critical for peptide ligand, motilin, binding and biological activity. In the current work, we focused on the predicted extracellular domains of the human GHS receptor 1a, and identified functionally important residues by using sequential deletions ranging from one to twelve amino acid residues and site-directed replacement mutagenesis approach. Each construct was transiently expressed in COS cells, and characterized for ghrelin- and growth hormone releasing peptide (GHRP)-6-stimulated intracellular calcium responses and ghrelin radioligand binding. Cys residues in positions 116 and 198 in the first and second extracellular loops and the perimembranous Glu187 residue in the second extracellular loop were critical for ghrelin and GHRP-6 biological activity. These results suggest that Cys residues in the extracellular domains in this family of Class A G protein-coupled receptor is likely involved in the highly conserved and functionally important disulfide bond, and that the perimembranous residues contribute peptide ligand binding and signaling.  相似文献   

6.
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein–protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.  相似文献   

7.
Murine epidermal growth factor (EGF) binds with approximately 250-fold higher binding affinity to the human EGF receptor (EGFR) than to the chicken EGFR. This difference in binding affinity enabled the identification of a major ligand-binding domain for EGF by studying the binding properties of various chicken/human EGFR chimera expressed in transfected cells lacking endogenous EGFR. It was shown that domain III of EGFR is a major ligand-binding region. Here, we analyze the binding properties of novel chicken/human chimera to further delineate the contact sequences in domain III and to assess the role of other regions of EGFR for their contribution to the display of high-affinity EGF binding. The chimeric receptors include chicken EGFR containing domain I of the human EGFR, chicken receptor containing domain I and III of the human EGFR, and two chimeric chicken EGFR containing either the amino terminal or the carboxy terminal halves of domain III of human EGFR, respectively. In addition, the binding of various human-specific anti-EGFR monoclonal antibodies that interfere with EGF binding is also compared. It is concluded that noncontiguous regions of the EGFR contribute additively to the binding of EGF. Each of the two halves of domain III has a similar contribution to the binding energy, and the sum of both is close to that of the entire domain III. This suggests that the folding of domain III juxtaposes sequences that together constitute the ligand-binding site. Domain I also provides a contribution to the binding energy, and the added contributions of both domain I and III to the binding energy generate the high-affinity binding site typical of human EGFR.  相似文献   

8.
Park JB  Yiu G  Kaneko S  Wang J  Chang J  He XL  Garcia KC  He Z 《Neuron》2005,45(3):345-351
A major obstacle for successful axon regeneration in the adult central nervous system (CNS) arises from inhibitory molecules in CNS myelin, which signal through a common receptor complex on neurons consisting of the ligand-binding Nogo-66 receptor (NgR) and two transmembrane coreceptors, p75 and LINGO-1. However, p75 expression is only detectable in subpopulations of mature neurons, raising the question of how these inhibitory signals are transduced in neurons lacking p75. In this study, we demonstrate that TROY (also known as TAJ), a TNF receptor family member selectively expressed in the adult nervous system, can form a functional receptor complex with NgR and LINGO-1 to mediate cellular responses to myelin inhibitors. Also, both overexpressing a dominant-negative TROY or presence of a soluble TROY protein can efficiently block neuronal response to myelin inhibitors. Our results implicate TROY in mediating myelin inhibition, offering new insights into the molecular mechanisms of regeneration failure in the adult nervous system.  相似文献   

9.
In this study, we demonstrate that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced encephalopathy. Systemic administration of lipopolysaccharide (LPS) induces a widespread inflammatory response similar to that observed in sepsis. Following LPS administration TNFR1(-/-) mice had less caspase-dependent apoptosis in brain cells and fewer neutrophils infiltrating the brain (p<0.039), compared to control C57Bl6 (TNFR1(+/+)) mice. TNFR1-dependent increase in aquaporin (AQP)-4 mRNA and protein expression was observed with a concomitant increase in water content, in brain (18% increase in C57Bl6 mice treated with LPS versus those treated with saline), similar to cerebral edema observed in sepsis. Furthermore, absence of TNFR1 partially but significantly reduced the activation of astrocytes, as shown by immunofluorescence and markedly inhibited iNOS mRNA expression (p<0.01). Septic encephalopathy is a devastating complication of sepsis. Although, considerable work has been done to identify the mechanism causing the pathological alterations in this setting, the culprit still remains an enigma. Our results demonstrate for the first time that endotoxemia leads to inflammation in brain, with alteration in blood-brain barrier, up-regulation of AQP4 and associated edema, neutrophil infiltration, astrocytosis, as well as apoptotic cellular death, all of which appear to be mediated by TNF-alpha signaling through TNFR1.  相似文献   

10.
The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. There have been few systematic studies of the ECLs (extracellular loops) of family B GPCRs. However, they are likely to be especially important for the interaction of the N-termini of the peptide agonists that are the natural agonists for these receptors. We have carried out alanine scans on all three ECLs of CLR, as well as their associated juxtamembrane regions. Residues within all three loops influence CGRP binding and receptor activation. Mutation of Ala203 and Ala206 on ECL1 to leucine increased the affinity of CGRP. Residues at the top of TM (transmembrane) helices 2 and 3 influenced CGRP binding and receptor activation. L351A and E357A in TM6/ECL3 reduced receptor expression and may be needed for CLR association with RAMP1. ECL2 seems especially important for CLR function; of the 16 residues so far examined in this loop, eight residues reduce the potency of CGRP at stimulating cAMP production when mutated to alanine.  相似文献   

11.
A 55 kDa nuclear localization signal binding protein (p55) is involved in the transport of the goat uterine estrogen receptor from the cytoplasm to the nuclear pore complex (NPC). p55 forms a complex with a 12 kDa protein (p12) which in turn becomes 'docked' at the NPC. The present study reports on the purification and functional characterization of p12. Both p55 and p12 are Mg2+-dependent ATPases. The protein-protein interactions that take place between these two molecules at the NPC cause an enhancement in the net ATPase activity associated with the protein complex. Presumably, this enhanced ATPase function helps in the final nuclear entry of the estrogen receptor; p55 remains associated with p12 at the nuclear entry site under these conditions.  相似文献   

12.
Juvenile polyposis syndrome (JPS) is an inherited hamartomatous-polyposis syndrome with a risk for colon cancer. JPS is a clinical diagnosis by exclusion, and, before susceptibility genes were identified, JPS could easily be confused with other inherited hamartoma syndromes, such as Bannayan-Riley-Ruvalcaba syndrome (BRRS) and Cowden syndrome (CS). Germline mutations of MADH4 (SMAD4) have been described in a variable number of probands with JPS. A series of familial and isolated European probands without MADH4 mutations were analyzed for germline mutations in BMPR1A, a member of the transforming growth-factor beta-receptor superfamily, upstream from the SMAD pathway. Overall, 10 (38%) probands were found to have germline BMPR1A mutations, 8 of which resulted in truncated receptors and 2 of which resulted in missense alterations (C124R and C376Y). Almost all available component tumors from mutation-positive cases showed loss of heterozygosity (LOH) in the BMPR1A region, whereas those from mutation-negative cases did not. One proband with CS/CS-like phenotype was also found to have a germline BMPR1A missense mutation (A338D). Thus, germline BMPR1A mutations cause a significant proportion of cases of JPS and might define a small subset of cases of CS/BRRS with specific colonic phenotype.  相似文献   

13.
S Guida  A Heguy  M Melli 《Gene》1992,111(2):239-243
The evolutionary conservation of a sequence or part of it can help to identify the essential functional and structural domains within a protein. We have cloned and characterised a cDNA coding for the type-I interleukin-1 receptor (IL-1R) of chick (ch) embryo fibroblasts. The comparison of the amino acid (aa) sequences of the avian with that of murine (m) and human (h) IL-1Rs shows a 60% homology. The intracellular domain is the most conserved region of the chIL-1R, showing 76-79% homology to the murine and human sequences, respectively. The striking conservation of the cytoplasmic region of the receptor is confirmed by its homology with the Toll receptor protein of Drosophila melanogaster. The alignment between the chicken and D. melanogaster proteins shows the presence of four aa blocks with more than 80% homology. The possible functional significance of this homology is discussed. The extracellular binding region of the receptor has a clearly recognisable immunoglobulin-like structure although the sequence divergence is higher than in the cytoplasmic domain.  相似文献   

14.
Following brain infection, the Challenge Virus Standard strain of rabies virus infects the retina. Rabies virus ocular infection induces the infiltration of neutrophils and predominantly T cells into the eye. The role of tumor necrosis factor alpha (TNF-alpha)-lymphotoxin signaling in the control of rabies virus ocular infection and inflammatory cell infiltration was assessed using mice lacking the p55 TNF-alpha receptor (p55TNFR(-/-) mice). The incidence of ocular disease and the intensity of retinal infection were greater in p55TNFR(-/-) mice than in C57BL/6 mice: the aggravation correlated with less neutrophil and T-cell infiltration. This indicates that cellular infiltration is under the control of the p55 TNF-alpha receptor and suggests that inflammatory cells may protect the eye against rabies virus ocular infection. The role of T cells following rabies virus ocular disease was assessed by comparison of rabies virus infection in nude mice with their normal counterparts. Indeed, the incidence and severity of the rabies virus ocular disease were higher in athymic nude mice than in BALB/c mice, indicating that T lymphocytes are protective during rabies virus ocular infection. Moreover, few T cells and neutrophils underwent apoptosis in rabies virus-infected retina. Altogether, these data suggest that T lymphocytes and neutrophils are able to enter the eye, escape the immune privilege status, and limit rabies virus ocular disease. In conclusion, rabies virus-mediated eye disease provides a new model for studying mechanisms regulating immune privilege during viral infection.  相似文献   

15.
Tumour Necrosis Factor (TNF) and Lymphotoxin (LT) can exert a wide range of effects on cells and tissues and they are important effector molecules in cell mediated immunity. All these effects are induced subsequent to the binding of these cytokines to specific membrane receptors. Recently, two of these membrane receptors of 55 and 75 kDa, have been identified which share some amino acid (AA) homology in their N-terminal extracellular domains but differ in their intracellular domains. We synthesized two synthetic 20 AA peptides from hydrophilic regions of the N-terminal extracellular domains of the 55 kDa receptor; peptide A shares homology with both 55 and 75 kDa receptors, peptide B is unique. We found peptide B inhibits both the binding and cytolytic activity of recombinant human TNF when tested on murine L929 cells in vitro. Polyclonal antiserum generated against peptide B will block binding of 125I-labelled TNF to these cells in vitro. However, peptide A and antiserum prepared against peptide A are without effect in these same assay systems. These data suggest that the 20 AA sequences from AA 175 to 194 in the N-terminal extracellular domain of the 55 kDa TNF receptor are expressed on the cell surface and are involved in the binding of TNF.  相似文献   

16.
High resolution structural studies of models of glutamate receptors (GluRs) have been limited to monomeric models of the ligand-binding site. To obtain oligomeric models of glutamate receptors that can reveal more complete structural information, we examined the assembly and ligand binding properties of two truncated versions of the GluR1 subunit. The first version, GluR1-WS, consisted of only the N-terminal extracellular segment (Ala(1)-Glu(520)) bridged by a synthetic linker to the second extracellular domain (Asn(615)-Gly(790)). The second version, GluR1-M1, consisted of the first N-terminal extracellular domain (Ala(1)-Glu(520)) bridged by a synthetic linker to a second segment containing the second extracellular domain, the third transmembrane domain, and the intracellular C-terminal domain (Asn(615)-Leu(889)). When expressed in Xenopus oocytes, GluR-WS was secreted and water-soluble; GluR1-M1 was displayed on the surface of oocytes. GluR1-WS exhibited a velocity sedimentation profile that was consistent with assembly of homooligomers and bound the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid with high affinity. These findings show that the extracellular domains of GluR1 that are sufficient for ligand binding apparently are sufficient for subunit assembly and might be a suitable target for structural studies of a water-soluble GluR1 oligomer.  相似文献   

17.

Aims

Stress mechanisms paradoxically contribute to allergic episodes in humans and mice. Glucocorticoids (GC) and interleukin (IL)-5 synergically upregulate murine bone-marrow eosinophil production. Here we explored the role of endogenous GC in allergen-stimulated bone-marrow eosinophil production in ovalbumin-sensitized/challenged mice.

Main methods

In BALB/c or C57BL/6 mice, sensitized and intranasally challenged with ovalbumin, we monitored eosinophil numbers in freshly harvested or cultured bone-marrow, and plasma corticosterone levels. Metyrapone (MET) was used to inhibit GC synthesis, and RU486 to block GC actions. In sensitized mice challenged intraperitoneally, we examined the relationship between eosinophilia of bone-marrow and peritoneal cavity, in the absence or presence of RU486. In experiments involving in vivo neutralization of tumor necrosis factor-α (TNF) by specific antibodies, or using mice which lack functional type I TNF receptors (TNFRI), we evaluated the relationship between TNF blockade, corticosterone levels, RU486 or MET treatment and challenge-induced bone-marrow eosinophilia.

Key findings

RU486 or MET pretreatments abolished challenge-induced increases in eosinophil numbers in bone-marrow (in vivo and ex vivo), and in the peritoneal cavity. MET, but not RU486, prevented the challenge-induced increase in corticosterone levels. Challenge-induced bone-marrow eosinophilia and corticosterone surge were abolished in TNFRI-deficient mice. Anti-TNF-treatment very effectively prevented challenge-induced bone-marrow eosinophilia, in the absence of RU486 or MET, but had no independent effect in the presence of either drug.

Significance

Endogenous GC was essential for allergen challenge-induced increases in eosinophil numbers inside bone-marrow. This effect required TNF and TNFRI, which suggests an immunoendocrine mechanism.  相似文献   

18.
Factor associated with neutral sphingomyelinase activation (FAN) represents a p55 TNFR (TNF-R55)-associated protein essential for the activation of neutral sphingomyelinase. By means of the yeast interaction trap system, we have identified the scaffolding protein receptor for activated C-kinase (RACK)1 as an interaction partner of FAN. Mapping studies in yeast revealed that RACK1 is recruited to the C-terminal WD-repeat region of FAN and binds to FAN through a domain located within WD repeats V to VII of RACK1. Our data indicate that binding of both proteins is not mediated by linear motifs but requires folding into a secondary structure, such as the multibladed propeller characteristic of WD-repeat proteins. The interaction of FAN and RACK1 was verified in vitro by glutathione S-transferase-based coprecipitation assays as well as in eukaryotic cells by coimmunoprecipitation experiments. Colocalization studies in transfected cells suggest that TNF-R55 forms a complex with FAN and that this complex recruits RACK1 to the plasma membrane. Furthermore, activation of N-SMase by TNF was strongly enhanced when RACK1, FAN, and a noncytotoxic TNF-R55 mutant were expressed concurrently, suggesting RACK1 as a modulator of N-SMase activation. Together, these findings implicate RACK1 as a novel component of the signaling pathways of TNF-R55.  相似文献   

19.
A down-modulation of both the 55-kDa (TNF-R55) and the 75-kDa (TNF-R75) TNF receptors is observed in neutrophils exposed to a variety of stimuli. Proteolytic cleavage of the extracellular region of both receptors (shedding) and, with TNF, internalization of TNF-R55 and shedding of TNF-R75 are the proposed mechanisms. We have characterized the TNF-induced shedding of TNF receptors in neutrophils and determined the nature of the involved proteinase. Neutrophils exposed to TNF release both TNF receptors. A release of TNF receptors comparable to that observed with TNF was induced with TNF-R55-specific reagents (mAbs and a mutant of TNF) but not with the corresponding TNF-R75-specific reagents. A hydroxamic acid compound (KB8301) almost completely inhibited shedding of TNF-R55 and to a lesser degree shedding of TNF-R75. KB8301 also inhibited FMLP-induced shedding to a similar extent. Shedding was also inhibited by 1,10-phenanthroline, but this effect was considered nonspecific as the compound, at variance with KB8301, almost completely inhibited TNF and FMLP-induced PMN activation. Diisopropylfluorophosphate partially inhibited shedding of TNF-R75, suggesting the contribution of a serine proteinase to the release of this receptor. Shedding activity was not affected by matrix metalloproteinases inhibitors nor was it released in the supernatants of FMLP-stimulated neutrophils. These results suggest that TNF induces release of its receptors, that such a release is mediated via TNF-R55, and that a membrane-bound and non-matrix metalloproteinase is involved in the process. The possibility that ADAM-17, which we show to be expressed in neutrophils, might be the involved proteinase is discussed.  相似文献   

20.
The roles of extracellular residues of G-protein-coupled receptors (GPCRs) are not well defined compared with residues in transmembrane helices. Nevertheless, it has been established that extracellular domains of both peptide-GPCRs and amine-GPCRs incorporate functionally important residues. Extracellular loop 2 (ECL2) has attracted particular interest, because the x-ray structure of bovine rhodopsin revealed that ECL2 projects into the binding crevice within the transmembrane bundle. Our study provides the first comprehensive investigation into the role of the individual residues comprising the entire ECL2 domain of a small peptide-GPCR. Using the V(1a) vasopressin receptor, systematic substitution of all of the ECL2 residues by Ala generated 30 mutant receptors that were characterized pharmacologically. The majority of these mutant receptor constructs (24 in total) had essentially wild-type ligand binding and intracellular signaling characteristics, indicating that these residues are not critical for normal receptor function. However, four aromatic residues Phe(189), Trp(206), Phe(209), and Tyr(218) are important for agonist binding and receptor activation and are highly conserved throughout the neurohypophysial hormone subfamily of peptide-GPCRs. Located in the middle of ECL2, juxtaposed to the highly conserved disulfide bond, Trp(206) and Phe(209) project into the binding crevice. Indeed, Phe(209) is part of the Cys-X-X-X-Ar (where Ar is an aromatic residue) motif, which is well conserved in both peptide-GPCRs and amine-GPCRs. In contrast, Phe(189) and Tyr(218), located at the extreme ends of ECL2, may be important for determining the position of the ECL2 cap over the binding crevice. This study provides mechanistic insight into the roles of highly conserved ECL2 residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号