首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cystic fibrosis: a disease of vulnerability to airway surface dehydration   总被引:2,自引:0,他引:2  
Cystic fibrosis (CF) lung disease involves chronic bacterial infection of retained airway secretions (mucus). Recent data suggest that CF lung disease pathogenesis reflects the vulnerability of airway surfaces to dehydration and collapse of mucus clearance. This predisposition is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in (i) the absence of CFTR-mediated Cl- secretion and regulation of epithelial Na+ channel (ENaC) function; and (ii) the sole dependence on extracellular ATP to rebalance these ion transport processes through P2 purinoceptor signaling. Recent clinical studies indicate that inhalation of hypertonic saline osmotically draws sufficient water onto CF airway surfaces to provide clinical benefit.  相似文献   

2.
The involvement of P2Y receptors, which are activated by extracellular nucleotides, in proliferative regulation of human lung epithelial cells is unclear. Here we show that extracellular ATP and UTP stimulate bromodeoxyuridine (BrdU) incorporation into epithelial cell lines. The nucleotide efficacy profile [ATP = ADP > UDP >or= UTP > adenosine >or= 2-methylthioadenosine-5'-diphosphate, with alpha,beta-methylene adenosine 5'-triphosphate, 2',3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, AMP, UMP, and ATPalphaS inactive] and PCR analysis indicate involvement of P2Y2 and P2Y6 receptors. The signal transduction pathway, which, via the P2Y2 receptor, transmits the proliferative activity of ATP or UTP in A549 cells downstream of phospholipase C, depends on Ca2+/calmodulin-dependent protein kinase II and nuclear factor-kappaB, but not on protein kinase C. Signaling does not involve the mitogen-activated protein kinases extracellular signal-regulated kinases-1 and -2, the phosphatidylinositol 3-kinase pathway, or Src kinases. Thus nucleotides regulate proliferation of human lung epithelial cells by a novel pathway. The stimulatory effect of UTP, but not ATP, in A549 cells is attenuated by preincubation with interleukin-1beta and interleukin-6, but not tumor necrosis factor-alpha. This indicates an important role for the pyrimidine-activated P2Y receptor in the inflammatory response of lung epithelia. ATP antagonizes the antiproliferative effect of the anticancer drugs paclitaxel and etoposide, whereas it enhances the activity of cisplatin about fourfold. Thus pathways activated by extracellular nucleotides differentially control proliferation of lung epithelial tumor cells.  相似文献   

3.
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca(2+)(i) and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide-induced response was mediated exclusively via Ca(2+)(i) interacting with a Ca(2+)-activated Cl(-) channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca(2+)-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca(2+)(i). However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca(2+)-sensitive and Ca(2+)-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca(2+)(i); and (3) Ca(2+)(i) regulation of the Ca(2+)-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca(2+)(i) failing to activate CaCC in both epithelia.  相似文献   

4.
Extracellular nucleotides are among the most potent mediators of mucociliary clearance (MCC) in human lungs. However, clinical trials revealed that aerosolized nucleotides provide only a transient improvement of MCC to patients diagnosed with cystic fibrosis (CF). In this study, we identified the mechanism that eliminates extracellular nucleotides from human airways. Polarized primary cultures of human bronchial epithelial cells were impermeable to extracellular nucleotides but rapidly dephosphorylated ATP into ADP, AMP, and adenosine. The half-life of a therapeutic ATP concentration (0.1 mm) was approximately 20 s within the periciliary liquid layer. The mucosal epithelial surface eliminated P2 receptor agonists (ATP = UTP > ADP > UDP) at 3-fold higher rates than the serosal surface. We also showed that mucosal (not serosal) ectoATPase activity increases toward areas most susceptible to airway obstruction (nose < bronchi < bronchioles). Bronchial cultures from patients with CF, primary ciliary dyskinesia, or alpha1-antitrypsin deficiency exhibited 3-fold higher mucosal (not serosal) ectoATPase activity than normal cultures. Time course experiments indicated that CF enhances ATP elimination and adenosine accumulation on the mucosal surface. Furthermore, nonspecific alkaline phosphatase was identified as the major regulator of airway nucleotide concentrations in CF, primary ciliary dyskinesia, and alpha1-antitrypsin deficiency. The ectoAT-Pase activity and mRNA expression of mucosally restricted nonspecific alkaline phosphatase were 3-fold higher on bronchial cultures from these patients than from healthy subjects. This study demonstrates that the duration of nucleotide-mediated MCC is limited by epithelial ectonucleotidases throughout human airways, with the efficiency of this mechanism enhanced in chronic inflammatory lung diseases, including CF.  相似文献   

5.
Extracellular ATP and its metabolite adenosine regulate mucociliary clearance in airway epithelia. Little has been known, however, regarding the actual ATP and adenosine concentrations in the thin ( approximately 7 microm) liquid layer lining native airway surfaces and the link between ATP release/metabolism and autocrine/paracrine regulation of epithelial function. In this study, chimeric Staphylococcus aureus protein A-luciferase (SPA-luc) was bound to endogenous antigens on primary human bronchial epithelial (HBE) cell surface and ATP concentrations assessed in real-time in the thin airway surface liquid (ASL). ATP concentrations on resting cells were 1-10 nm. Inhibition of ecto-nucleotidases resulted in ATP accumulation at a rate of approximately 250 fmol/min/cm2, reflecting the basal ATP release rate. Following hypotonic challenge to promote cell swelling, cell-surface ATP concentration measured by SPA-luc transiently reached approximately 1 microm independent of ASL volume, reflecting a transient 3-log increase in ATP release rates. In contrast, peak ATP concentrations measured in bulk ASL by soluble luciferase inversely correlated with volume. ATP release rates were intracellular calcium-independent, suggesting that non-exocytotic ATP release from ciliated cells, which dominate our cultures, mediated hypotonicity-induced nucleotide release. However, the cystic fibrosis transmembrane conductance regulator (CFTR) did not participate in this function. Following the acute swelling phase, HBE cells exhibited regulatory volume decrease which was impaired by apyrase and facilitated by ATP or UTP. Our data provide the first evidence that ATP concentrations at the airway epithelial surface reach the range for P2Y2 receptor activation by physiological stimuli and identify a role for mucosal ATP release in airway epithelial cell volume regulation.  相似文献   

6.
Mechanically induced ATP release from human airway epithelial cells regulates mucociliary clearance through cell surface nucleotide receptors. Ectoenzymes detected on these cells were recently shown to terminate ATP-mediated responses by sequential dephosphorylation of extracellular ATP into ADP, AMP, and adenosine. We now demonstrate that an ecto-adenylate kinase (ecto-AK) contributes to the metabolism of adenine nucleotides on human airway epithelial surfaces by the reversible reaction: ATP + AMP 2ADP. This phosphotransferase exhibited a bilateral distribution on polarized primary cultures of human bronchial epithelial cells with a 4-fold higher activity on the mucosal surface. Ecto-AK presented an absolute requirement for magnesium and adenine-based nucleotides. UMP, GMP, and CMP could not substitute for AMP as gamma-phosphate acceptor, and UDP could not replace ADP. Apparent K(m) and V(max) values were 23 +/- 5 microM and 1.1 +/- 0.1 nmol x min(-1) x cm(-2) for ATP and 43 +/- 6 microM and 0.5 +/- 0.1 nmol x min(-1) x cm(-2) for ADP. Ecto-AK accounted for 20% of [gamma-(32)P]ATP dephosphorylation, and the impermeant AK inhibitor, diadenosine pentaphosphate, reduced ADPase activity by more than 70% on both epithelial surfaces. Time course experiments on ATP metabolism demonstrated that ecto-AK significantly prolongs effective ATP and ADP concentrations on airway epithelial surfaces for P2 receptor signaling and reduces by 6-fold adenosine production. Our data suggest a role for this nucleotide entrapment cycle in the propagation of purine-mediated mucociliary clearance on human airway epithelial surfaces.  相似文献   

7.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

8.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

9.
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD), pneumonia, cystic fibrosis (CF), and bronchiectasis. Cif (PA2934), a bacterial toxin secreted in outer membrane vesicles (OMV) by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB), USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.  相似文献   

10.
Mammalian airways normally regulate the volume of a thin liquid layer, the periciliary liquid (PCL), to facilitate the mucus clearance component of lung defense. Studies under standard (static) culture conditions revealed that normal airway epithelia possess an adenosine-regulated pathway that blends Na+ absorption and Cl- secretion to optimize PCL volume. In cystic fibrosis (CF), the absence of CF transmembrane conductance regulator results in a failure of adenosine regulation of PCL volume, which is predicted to initiate mucus stasis and infection. However, under conditions that mimic the phasic motion of the lung in vivo, ATP release into PCL was increased, CF ion transport was rebalanced, and PCL volume was restored to levels adequate for lung defense. This ATP signaling system was vulnerable, however, to insults that trigger CF bacterial infections, such as viral (respiratory syncytial virus) infections, which up-regulated extracellular ATPase activity and abolished motion-dependent ATP regulation of CF PCL height. These studies demonstrate (i) how the normal coordination of opposing ion transport pathways to maintain PCL volume is disrupted in CF, (ii) the hitherto unknown role of phasic motion in regulating key aspects of normal and CF innate airways defense, and (iii) that maneuvers directed at increasing motion-induced nucleotide release may be therapeutic in CF patients.  相似文献   

11.
12.
Aortic smooth muscle cell release of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been implicated in aortic aneurysm pathogenesis, but proximal modulation of release is poorly understood. Extracellular nucleotides regulate vascular smooth muscle cell metabolism in response to physiochemical stresses, but nucleotide modulation of MMP and/or TIMP release has not been reported. We hypothesized that nucleotides modulate MMP-2 and TIMP-2 release from human aortic smooth muscle cells (HASMCs) via distinct purinergic receptors and signaling pathways. We exposed HASMCs to exogenous ATP and other nucleotides with and without interleukin-1beta (IL-1beta). HASMCs were pretreated in some experiments with apyrase, which degrades ATP, and inhibitors of ERK1/2, JNK, and p38 MAPK. MMP-2 and TIMP-2 released into supernatant were assessed using ELISA and Western blotting. ATP, adenosine, and UTP significantly stimulated MMP-2 release in the presence of IL-1beta (300 nM ATP: 181 +/- 22%, P = 0.003; 30 microm adenosine: 244 +/- 150%, P = 0.001; and 200 microm UTP: 153 +/- 40%, P = 0.015; vs. 100% constitutive). ATP also stimulated MMP-2 release in the absence of IL-1beta (100 microm ATP: 148 +/- 38% vs. 100% constitutive). Apyrase significantly reduced ATP-stimulated MMP-2 release (apyrase + 500 nM ATP: 59 +/- 3% vs. 124 +/- 7% with 500 nM ATP). Rank-order agonist potency for MMP-2 release was consistent with ATP activation of PAY and PAY receptors. ATP induced phosphorylation of intracellular JNK, and inhibition of the JNK pathway blocked ATP-stimulated MMP-2 release, indicating signaling via this pathway. Nucleotides are thus novel stimulants of MMP-2 release from HASMCs and may provide a mechanistic link between physiochemical stress in the aorta and aneurysms, especially in the context of inflammation.  相似文献   

13.
Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl(-) secretion and inhibit amiloride-sensitive Na(+) transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na(+) channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl(-) channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl(-) transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N(2),2'-O-dibutyrylguanosine 3',5'-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl(-).  相似文献   

14.
The CFTR [CF (cystic fibrosis) transmembrane conductance regulator] chloride channel is activated by cyclic nucleotide-dependent phosphorylation and ATP binding, but also by non-phosphorylation-dependent mechanisms. Other CFTR functions such as regulation of exocytotic protein secretion are also activated by cyclic nucleotide elevating agents. A soluble protein comprising the first NBD (nucleotide-binding domain) and R-domain of CFTR (NBD1-R) was synthesized to determine directly whether CFTR binds cAMP. An equilibrium radioligand-binding assay was developed, firstly to show that, as for full-length CFTR, the NBD1-R protein bound ATP. Half-maximal displacement of [3H]ATP by non-radioactive ATP at 3.5 microM and 3.1 mM was demonstrated. [3H]cAMP bound to the protein with different affinities from ATP (half-maximal displacement by cAMP at 2.6 and 167 microM). Introduction of a mutation (T421A) in a motif predicted to be important for cyclic nucleotide binding decreased the higher affinity binding of cAMP to 9.2 microM. The anti-CFTR antibody (MPNB) that inhibits CFTR-mediated protein secretion also inhibited cAMP binding. Thus binding of cAMP to CFTR is consistent with a role in activation of protein secretion, a process defective in CF gland cells. Furthermore, the binding site may be important in the mechanism by which drugs activate mutant CFTR and correct defective DeltaF508-CFTR trafficking.  相似文献   

15.
Airway epithelia are positioned at the interface between the body and the environment, and generate complex signaling responses to inhaled toxins and other stresses. Luminal mechanical stimulation of airway epithelial cells produces a propagating wave of elevated intracellular Ca(2+) that coordinates components of the integrated epithelial stress response. In polarized airway epithelia, this response has been attributed to IP(3) permeation through gap junctions. Using a combination of approaches, including enzymes that destroy extracellular nucleotides, purinergic receptor desensitization, and airway cells deficient in purinoceptors, we demonstrated that Ca(2+) waves induced by luminal mechanical stimulation in polarized airway epithelia were initiated by the release of the 5' nucleotides, ATP and UTP, across both apical and basolateral membranes. The nucleotides released into the extracellular compartment interacted with purinoceptors at both membranes to trigger Ca(2+) mobilization. Physiologically, apical membrane nucleotide-release coordinates airway mucociliary clearance responses (mucin and salt, water secretion, increased ciliary beat frequency), whereas basolateral release constitutes a paracrine mechanism by which mechanical stresses signal adjacent cells not only within the epithelium, but other cell types (nerves, inflammatory cells) in the submucosa. Nucleotide-release ipsilateral and contralateral to the surface stimulated constitutes a unique mechanism by which epithelia coordinate local and distant airway defense responses to mechanical stimuli.  相似文献   

16.
Human airways and glands express the anion channel cystic fibrosis transmembrane conductance regulator, CFTR, and the epithelial Na(+) channel, ENaC. Cystic fibrosis (CF) airway glands fail to secrete mucus in response to vasoactive intestinal peptide or forskolin; the failure was attributed to loss of CFTR-mediated anion and fluid secretion. Alternatively, CF glands might secrete acinar fluid via CFTR-independent pathways, but the exit of mucus from the glands could be blocked by hyperabsorption of fluid in the gland ducts. This could occur because CFTR loss can disinhibit ENaC, and ENaC activity can drive absorption. To test these two hypotheses, we measured single gland mucus secretion optically and applied ENaC inhibitors to determine whether they augmented secretion. Human CF glands were pretreated with benzamil and then stimulated with forskolin in the continued presence of benzamil. Benzamil did not rescue the lack of secretion to forskolin (50 glands, 6 CF subjects) nor did it increase the rate of cholinergically mediated mucus secretion from CF glands. Finally, neither benzamil nor amiloride increased forskolin-stimulated mucus secretion from porcine submucosal glands (75 glands, 7 pigs). One possible explanation for these results is that ENaC within the gland ducts was not active in our experiments. Consistent with that possibility, we discovered that human airway glands express Kunitz-type and non-Kunitz serine protease inhibitors, which might prevent proteolytic activation of ENaC. Our results suggest that CF glands do not display excessive, ENaC-mediated fluid absorption, leaving defective, anion-mediated fluid secretion as the most likely mechanism for defective mucus secretion from CF glands.  相似文献   

17.
Extracellular nucleotides and nucleosides promote a vast range of physiological responses, via activation of cell surface purinergic receptors. Virtually all tissues and cell types exhibit regulated release of ATP, which, in many cases, is accompanied by the release of uridine nucleotides. Given the relevance of extracellular nucleotide/nucleoside-evoked responses, understanding how ATP and other nucleotides are released from cells is an important physiological question. By facilitating the entry of cytosolic nucleotides into the secretory pathway, recently identified vesicular nucleotide and nucleotide-sugar transporters contribute to the exocytotic release of ATP and UDP-sugars not only from endocrine/exocrine tissues, but also from cell types in which secretory granules have not been biochemically characterized. In addition, plasma membrane connexin hemichannels, pannexin channels, and less-well molecularly defined ATP conducting anion channels have been shown to contribute to the release of ATP (and UTP) under a variety of conditions.  相似文献   

18.
Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl- secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl- dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in oocytes even after exposure to hypertonic or hypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.  相似文献   

19.
In airway epithelial cells, apical adenosine regulates transepithelial anion secretion by activation of apical cystic fibrosis transmembrane conductance regulator (CFTR) via adenosine receptors and cAMP/PKA signaling. However, the potent stimulation of anion secretion by adenosine is not correlated with its modest intracellular cAMP elevation, and these uncorrelated efficacies have led to the speculation that additional signaling pathways may be involved. Here, we showed that mucosal adenosine-induced anion secretion, measured by short-circuit current (Isc), was inhibited by the PLC-specific inhibitor U-73122 in the human airway submucosal cell line Calu-3. In addition, the Isc was suppressed by BAPTA-AM (a Ca2+ chelator) and 2-aminoethoxydiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor blocker), but not by PKC inhibitors, suggesting the involvement of PKC-independent PLC/Ca2+ signaling. Ussing chamber and patch-clamp studies indicated that the adenosine-induced PLC/Ca2+ signaling stimulated basolateral Ca2+-activated potassium (KCa) channels predominantly via A2B adenosine receptors and contributed substantially to the anion secretion. Thus, our data suggest that apical adenosine activates contralateral K+ channels via PLC/Ca2+ and thereby increases the driving force for transepithelial anion secretion, synergizing with its modulation of ipsilateral CFTR via cAMP/PKA. Furthermore, the dual activation of CFTR and KCa channels by apical adenosine resulted in a mixed secretion of chloride and bicarbonate, which may alter the anion composition in the secretion induced by secretagogues that elicit extracellular ATP/adenosine release. Our findings provide novel mechanistic insights into the regulation of anion section by adenosine, a key player in the airway surface liquid homeostasis and mucociliary clearance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号