首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Internuclear distances obtained from nuclear Overhauser effects were used in combination with a distance geometry algorithm to determine the conformation of Mg(alpha,beta-methylene)ATP bound to the Escherichia coli truncated methionyl-tRNA synthetase (delta MTS) both in the absence and presence of cognate and noncognate amino acids. Mg(alpha,beta-methylene)ATP, a nonhydrolyzable analog of ATP, was used to prevent hydrolysis of the nucleotide in the presence of either cognate or noncognate amino acids. Kinetic analysis showed that Mg(alpha,beta-methylene)ATP was a linear competitive inhibitor with respect to ATP in the ATP-pyrophosphate exchange reaction with a Ki = 1.2 mM. The pattern of internuclear Overhauser effects on Mg(alpha,beta-methylene)ATP bound to delta MTS was qualitatively consistent only with an anti glycosidic torsional angle, suggesting that the adenosine portion of the nucleotide is uniquely oriented in the binary enzyme-nucleotide complex. Nearly identical patterns of nuclear Overhauser effects were also observed in ternary complexes containing either cognate L-methionine or noncognate L-homocysteine amino acids. Distance geometry calculations permitted the range and conformational space of the allowed adenine-ribose glycosidic torsional angles in each of the complexes to be better defined and compared. Average adenine-ribose glycosidic torsional angles for enzyme-bound Mg(alpha,beta-methylene)ATP of -106 +/- 9 degrees, -99 +/- 11 degrees, and -97 +/- 11 degrees were determined for the delta MTS.Mg(alpha,beta-methylene)ATP, delta MTS.Mg(alpha,beta-methylene)ATP.L-methionine, and delta MTS.Mg(alpha,beta-methylene)ATP.L-homocysteine complexes, respectively. Comparison of the three enzyme-bound conformations showed that a single nucleotide structure having an adenine-ribose glycosidic torsional angle of -98 degrees with a 3'-endo to O4'-exo ribose sugar pucker was, within error, consistent with the experimental internuclear distances obtained in all three complexes. The nearly identical anti glycosidic torsional angles observed in all three complexes demonstrates that the conformation of the adenosine moiety of the enzyme-bound nucleotide is not sensitive to the presence or the nature of the amino acid bound at the aminoacyladenylate site. Therefore, conformational changes known to occur in the methionyl-tRNA synthetase upon ligand binding appear not to alter the bound conformation of the nucleotide. Information on the conformation and arrangement of substrates bound at the aminoacyladenylate site of delta MTS is necessary for understanding the molecular mechanisms involved in amino acid activation and discrimination.  相似文献   

2.
L J Ferrin  A S Mildvan 《Biochemistry》1985,24(24):6904-6913
The conformations and binding site environments of Mg2+TTP and Mg2+dATP bound to Escherichia coli DNA polymerase I and its large (Klenow) fragment have been investigated by proton NMR. The effect of the large fragment of Pol I on the NMR line widths of the protons of Mg2+TTP detected one binding site for this substrate with a dissociation constant of 300 +/- 100 microM and established simple competitive binding of deoxynucleoside triphosphates at this site in accord with previous equilibrium dialysis experiments with whole Pol I [Englund, P. T., Huberman, J.A., Jovin, T.M., & Kornberg, A. (1969) J. Biol. Chem. 244, 3038]. Primary negative nuclear Overhauser effects were used to calculate interproton distances on enzyme-bound Mg2+dATP and Mg2+TTP. These distances established that each substrate was bound with an anti-glycosidic torsional angle (chi) of 50 +/- 10 degrees for Mg2+dATP and 40 +/- 10 degrees for Mg2+TTP. The sugar pucker of both substrates was predominantly O1'-endo, with a C5'-C4'-C3'-O3' exocyclic torsional angle (delta) of 95 +/- 10 degrees for Mg2+dATP and 100 +/- 10 degrees for Mg2+TTP. The consistency of these conformations with those previously proposed, on the basis of distances from Mn2+ at the active site [Sloan, D. L., Loeb, L. A., Mildvan, A.S., & Feldman, R.J. (1975) J. Biol. Chem. 250, 8913], indicates a unique conformation for each bound nucleotide. The chi and delta values of the bound substrates are appropriate for nucleotide units of B DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
500 MHz H, homonuclear, intra-molecular, transferred Nuclear Overhauser Effect measurements have been performed on the bound forms of a classical opiate antagonist, nalorphine and an agonist, levorphanol at their respective binding sites in two different specific anti-opiate monoclonal antibody fragments. Based upon previous studies of opiate conformations in solution the results clearly show without extensive interpretation that one of these flexible haptens has the opposite (from solution) isomeric conformation in its bound form. For nalorphine the axial isomer of the N-allyl substituent is the bound form whereas in solution the equatorial isomer dominates at a ratio of 5:1. For levorphanol the bound form is that of equatorial N-methyl in accord with the low energy conformation in solution. In this preliminary report we discuss the initial measurements and results and their implications with respect to the conformations of flexible ligands at macromolecular binding sites including opiate receptors.  相似文献   

5.
Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (chi = 78 +/- 10 degrees) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH3)4ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides [chi = 78 +/- 10 degrees, O1'-endo; Rosevear, P.R., Bramson, H.N., O'Brian, C., Kaiser, E.T., & Mildvan, A.S. (1983) Biochemistry 22, 3439]. Distance geometry calculations also suggest that upper limit distances, when low enough (less than or equal to 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker.  相似文献   

6.
N Murali  Y Lin  Y Mechulam  P Plateau    B D Rao 《Biophysical journal》1997,72(5):2275-2284
The conformations of MgATP and AMP bound to a monomeric tryptic fragment of methionyl tRNA synthetase have been investigated by two-dimensional proton transferred nuclear Overhauser effect spectroscopy (TRNOESY). The sample protocol was chosen to minimize contributions from adventitious binding of the nucleotides to the observed NOE. The experiments were performed at 500 MHz on three different complexes, E.MgATP, E.MgATP.L-methioninol, and E.AMP.L-methioninol. A starter set of distances obtained by fitting NOE build-up curves (not involving H5' and H5") were used to determine a CHARMm energy-minimized structure. The positioning of the H5' and H5" protons was determined on the basis of a conformational search of the torsion angle to obtain the best fit with the observed NOEs for their superposed resonance. Using this structure, a relaxation matrix was set up to calculate theoretical build-up curves for all of the NOEs and compare them with the observed curves. The final structures deduced for the adenosine moieties in the three complexes are very similar, and are described by a glycosidic torsion angle (chi) of 56 degrees +/- 5 degrees and a phase angle of pseudorotation (P) in the range of 47 degrees to 52 degrees, describing a 3(4)T-4E sugar pucker. The glycosidic torsion angle, chi, deduced here for this adenylyl transfer enzyme and those determined previously for three phosphoryl transfer enzymes (creatine kinase, arginine kinase, and pyruvate kinase), and one pyrophosphoryl enzyme (PRibPP synthetase), are all in the range 52 degrees +/- 8 degrees. The narrow range of values suggests a possible common motif for the recognition and binding of the adenosine moiety at the active sites of ATP-utilizing enzymes, irrespective of the point of cleavage on the phosphate chain.  相似文献   

7.
Transferred nuclear Overhauser effect measurements (in the two-dimensional mode) have been used to determine the three-dimensional conformation of an ATP analogue, Co(NH3)4ATP, at the active site of sheep kidney Na,K-ATPase. Previous studies have shown that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the Na,K-ATPase [Klevickis, C., & Grisham, C.M. (1982) Biochemistry 21, 6979. Gantzer, M.L., et al. (1982) Biochemistry 21, 4083]. Nine unique proton-proton distances on ATPase-bound Co(NH3)4ATP were determined from the initial build-up rates of the cross-peaks of the 2D-TRNOE data sets. These distances, taken together with previous 31P and 1H relaxation measurements with paramagnetic probes, are consistent with a single nucleotide conformation at the active site. The bound Co(NH3)4ATP) adopts an anti conformation, with a glycosidic torsion angle of 35 degrees, and the conformation of the ribose ring is slightly N-type (C2'-exo, C3'-endo). The delta and gamma torsional angles in this conformation are 100 degrees and 178 degrees, respectively. The nucleotide adopts a bent configuration, in which the triphosphate chain lies nearly parallel to the adenine moiety. Mn2+ bound to a single, high-affinity site on the ATPase lies above and in the plane of the adenine ring. The distances from enzyme-bound Mn2+ to N6 and N7 are too large for first coordination sphere complexes, but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules. The NMR data also indicate that the structure of the bound ATP analogue is independent of the conformational state of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Lin Y  Nageswara Rao BD 《Biochemistry》2000,39(13):3636-3646
Adenosine conformations of adenosine 5'-triphosphate (ATP) and adenosine 5'-monophosphate (AMP), and of an ATP analogue, adenylyl imidodiphosphate (AMPPNP), bound to Escherichia coliadenylate kinase (AKe) in the complexes of AKe.Mg(II)ATP, AKe.AMP.Mg(II)GDP, AKe. AMPPNP, and AKe.Mg(II)AMPPNP were determined by transferred two-dimensional nuclear Overhauser effect spectroscopy (TRNOESY) measurements and molecular dynamics simulations. The glycosidic torsion angles, chi, deduced for the adenine nucleotides in these complexes are 51 degrees, 37 degrees, 49 degrees, and 47 degrees, respectively, with an experimental error of about +/-5 degrees. These values are in general agreement with those previously measured for other ATP-utilizing enzymes, suggesting a possible common motif for adenosine recognition and binding. The pseudorotational phase angle, P, of the sugar puckers for the bound nucleotides varied between 50 degrees and 103 degrees. These solution-state conformations are significantly different from those in published data from X-ray crystallography. A computation of the ligand NOEs, made by using the program CORCEMA [Moseley, H. N. B., Curto, E. V., and Krishna, N. R. (1995) J. Magn. Reson. B108, 243-261] with the protein protons in the vicinity of nucleotide included, on the basis of the X-ray structure of the AKe.AMP.AMPPNP complex [Berry, M. B., Meador, B., Bilderback, T., Liang, P., Glaser, M., and Philips, G. N. , Jr. (1994) Proteins: Struct., Funct., Genet. 19, 183-198], showed that polarization transfer to the protein protons does not produce significant errors in the structures determined by considering the ligand NOEs alone.  相似文献   

9.
The conformation of adenosine 5'-triphosphate in the manganese complex of pyruvate kinase from rabbit muscle was determined from six metal to nucleus distances derived by nuclear magnetic relaxation techniques. On the enzyme, no direct metal-ATP coordination exists. The phosphorous atoms of ATP are 4.9 to 5.1 A away from manganese, a distance which indicates either a predominantly (greater than or equal to 94%) second sphere complex or, less likely, a highly distorted inner sphere complex. Thus, water ligands or ligands from the protein might intervene between the ATP molecule and the divalent metal ion and facilitate their interaction. The metal-gammaP distance of 5 A for pyruvate kinase-bound ATP is equal to that found for the phosphorous atom of phosphoenolpyruvate and cobalt(II) on pyruvate kinase (Melamud, E., and Mildvan, A. S. (1975) J. Biol. Chem. 250, 8193-8201), which is consistent with the overlap in space of the P-enolpyruvate-phosphorus and the gammaP of ATP at the active site. This observation explains the competitive binding of these two substrates to the enzyme, as detected by NMR and by early kinetic studies. From the phosphorus data and from measurements of the relaxation rates of 3 protons of ATP in the pyruvate kinase-metal-ATP complex, the conformation of ATP was characterized as extended with distances of 6.0, 9.1, and 7.5 A from manganese to the H8, H2, and H'1 protons, respectively. The torsion angle about the glycosidic bond (chi) which defines the conformation of the enzyme-bound riboside and adenine rings was determined to be 30 degrees. In contrast, the conformation of the binary Mn(II)-ATP complex in solution is folded around the metal with direct manganese coordination of the alpha-, beta-, and gamma-phosphorus atoms, and with metal to proton distances of 4.5, 6.4, and 6.2 A for the H8, H2, and H'1 protons, suggesting a second sphere manganese-adenine interaction. The chi angle equals 90 degrees for the binary complex primarily because of the metal-base interaction. Thus, a profound change in the conformation and structure of Mn(II)-ATP from a folded chelate to an extended second sphere complex results when the nucleotide binds to pyruvate kinase.  相似文献   

10.
Internuclear distances obtained from transferred nuclear Overhauser effects were used in combination with distance geometry calculations to define the E. coli isoleucyl-tRNA synthetase bound conformation of Mg(alpha, beta-methylene)ATP both in the absence and in the presence of the cognate and noncognate amino acids L-isoleucine and L-valine, respectively. A single nucleotide structure having an anti adenine-ribose glycosidic torsional angle of -114 degrees was found to satisfy the experimental distance constraints. The nearly identical anti glycosidic torsional angles observed in all three complexes demonstrate that the conformation of the adenosine moiety of the enzyme-bound nucleotide is not sensitive to the presence or to the nature of the amino acid bound at the aminoacyladenylate site. In addition, the acceptable range of Mg(alpha, beta-methylene)ATP conformations bound to the E. coli isoleucyl-tRNA synthetase was found to be nearly identical to that previously determined for the E. coli methionyl-tRNA synthetase (Williams and Rosevear (1991) J. Biol. Chem. 266, 2089-2098). Thus, the predicted structural homology between the isoleucyl- and methionyl-tRNA synthetases, both members of the same class of synthetases on the basis of common consensus sequences, is further supported by consensus enzyme-bound nucleotide conformations.  相似文献   

11.
12.
The conformations of MgATP bound to a nucleotidyl transfer enzyme, methionyl tRNA synthetase and a phosphoryl transfer enzyme, pyruvate kinase, were studied by transferred NOE (TRNOE) measurements in 1H NMR. The experiments were performed on D2O solutions at 276 MHz and 300 MHz, and 10 degrees C in the presence of approximately a tenfold excess of substrate over the enzyme (sites). Selective inversion of chosen resonances was accomplished with an appropriately tailored DANTE sequence consisting of 100 phase-alternating hard 1.8 degree pulses. NOE measurements were made in terms of difference spectra (with and without inversion) at 6-8 delay times ranging from 10-500 ms following the DANTE sequence. A full complement of ten NOE build-up curves obtained for each enzyme complex was analyzed by using the complete relaxation-matrix method (which includes all the non-exchangeable protons in MgATP) suitably modified to include exchange between bound and free substrate. Molecular mechanics computations were used to examine the energetic implications of the NOE-determined structure. The final structures obtained for MgATP bound to the two enzymes were very similar to each other, with a 3'-endo sugar pucker and an anti conformation with a glycosidic torsional angle (O'4-C'1-N9-C8) of 39 degrees +/- 4 degrees. Both enzymes contain multiple binding sites for MgATP and hence the structure obtained in each case represents an average due to chemical exchange. However, TRNOE experiments performed on a tryptic fragment of methionyl tRNA synthetase which has a single MgATP binding site, show that the same structure fits these measurements as well. This evidence, coupled with the striking similarity of the structures deduced, for the two enzyme complexes, and the reciprocal sixth-power dependence of NOE on interproton distance, strongly suggests that the conformations at the individual binding sites of both the enzymes are virtually identical. This conclusion is in contrast with multiple conformations of MgATP bound to pyruvate kinase, proposed by Rosevear, P.R., Fox, T.L. & Mildvan, A.S. (1987) Biochemistry 26, 3487-3493.  相似文献   

13.
A novel method is proposed for the study of the conformation in solution of small molecules bound to proteins. In transfer of saturation experiments, irradiation at the frequency of a proton in the bound ligand can result in an intensity change in the signal from a different proton in the free excess ligand via a nuclear Overhauser effect between the two protons in the bound ligand. Approximatel calculations show that the observation of such effects depends upon the close spatial proximity (within about 4.0 Å) of the two protons involved and thus gives useful conformational information. Two examples of this method are given, for the binding of trimethoprim and NADP+, respectively, to Lactobacillus casei dihydrofolate reductase.  相似文献   

14.
Structural and functional characteristics of rabbit muscle pyruvate kinase (PK), a tetrameric enzyme having identical subunits, were investigated under neutral as well as acidic conditions by using enzymatic activity measurements and a combination of optical methods, such as circular dichroism, fluorescence, and ANS binding. At low pH and low ionic strength, pyruvate kinase exists in a partially unfolded state (UA state) retaining half of the secondary structure and no tertiary interactions along with a strong binding to the hydrophobic dye, ANS. Addition of anions, like NaCl, KCl, and Na2SO4, to the acid-unfolded state induces refolding, resulting structural propensities similar to that of native tetramer. When anion concentration exceeds a critical limit (0.7 M KCl), a sudden loss of secondary structure and decrease in fluorescence intensity with a redshift in the emission maximum are seen which may be due to the aggregation of the protein, probably due to the intermolecular association. The anion-refolded state is more stable than the UA state, and its stability is nearly equal to that of native protein toward chemical-induced unfolding by Gu-HCl and urea. Moreover, at low concentrations, Gu-HCl behaves like an anion, by inducing refolding of the acid-unfolded state with structural features equivalent to that of native molecule. These observations support a model of protein folding where certain conformations of low free energy prevail and are populated under non-native conditions with different stability.  相似文献   

15.
16.
17.
Rabbit muscle pyruvate kinase was inactivated by 2', 3'-dialdehyde ADP with the incorporation of one molecule of reagent per enzyme subunit. The inactivated protein was digested with trypsin after reduction and carboxymethylation. The labeled peptide was isolated by gel filtration and further purified by HPLC. The peptide was sequenced both by liquid-phase and gas-phase automatic Edman degradation. A 34-residue peptide was obtained. This peptide is identical to a tryptic peptide labeled with trinitrobenzenesulfonate, isolated and sequenced by Johnson et al. (Biochem. Biophys. Res. Commun. (1979) 90, 525-530) from bovine muscle pyruvate kinase. Available evidence suggests that dialdehyde ADP labels the enzyme at the same lysine in position 25 of the peptide, as found by Johnson et al. The high homology between the isolated peptide and regions of other pyruvate kinases from low to high eukaryotes supports the idea that this peptide is related to the enzyme active site.  相似文献   

18.
19.
25Mg NMR spectroscopy was used to study the interactions of the activating cations with their respective binding sites in the enzymes yeast enolase and rabbit muscle pyruvate kinase (PK). Titration of Mg2+ with enolase allows for the calculation of 1/T2 for Mg2+ bound at site I of 1510 s-1 and a quadrupolar coupling constant chi = 0.30 MHz. Titration of Mg2+ with enolase in the presence of 2-phosphoglycerate (PGA) and Zn2+, where Zn2+ binds specifically at site I, gives a 1/T2 for Mg2+ bound at site II of 4000 s-1 (chi = 0.49 MHz). The Mg2+ at site II appears to be more anisotropic than Mg2+ at site I. The titration of site I of the enolase-Mg-PGA-Mg complex with Zn2+ or Mn2+ shows a simple displacement of the Mg2+. No paramagnetic effects by Mn2+ on 25Mg relaxation were observed. Temperature studies of the 25Mg resonance show that fast exchange of the Mg2+ occurs under these conditions. From the lack of a paramagnetic effect, the distance between the cations at sites I and II must be more than 6-9 A. This distance limits the location, hence the function, of the cation at site II for catalytic activity. Titration of Mg2+ with PK gives a 1/T2 for bound Mg2+ of 2200 s-1 (chi = 0.24 MHz). A titration of Mg2+ with PK in the presence of the inhibitor oxalate gives a 1/T2 of 400 s-1. The temperature dependence of 25Mg relaxation in the PK-Mg-oxalate complex is consistent with slow exchange (Ea = 6.1 +/- 1.6 kcal/mol). The enzyme-bound cation is more tightly sequestered by the addition of a ligand that binds directly to the cation. An investigation of the 25Mg relaxation in the PK-Mn-oxalate-Mg-ATP complex, where the Mg2+ is bound to the nucleotide and the Mn2+ was enzyme bound, was not successful due to precipitation of PK under experimental conditions and the short T2 relaxation for 25Mg in this complex. The applications of 25Mg NMR have been useful in partially describing the properties of the bound Mg2+ in these two metal-requiring enzymes.  相似文献   

20.
P R Sears  P F Dillon 《Biochemistry》1999,38(45):14881-14886
The interaction of pyruvate kinase from skeletal (SKPK) and smooth (SMPK) muscle with MM-creatine kinase (MMCK) and BB-creatine kinase (BBCK) was assessed using temporal absorbance changes, variations in absorbance at different wavelengths, concentration dependence, association in an electric field, and PK kinetic activity. SKPK exhibits a time course of absorbance increase in the presence of MMCK with a time constant of 29.5 min. This increase occurs at all wavelength from 240 to 1000 nm. At 195 nm, the combination of SKPK and MMCK produces a decrease in absorption with electric fields of both 0 and 204 V/cm. The change in SKPK-MMCK is saturable. SKPK activity is significantly increased by the presence of MMCK in solutions of 0-32% ethanol. These results indicate specific SKPK-MMCK interaction. SMPK and BBCK did not exhibit similar coupling when the BBCK concentration dependence of absorbance or SMPK activity in solutions of 0-32% ethanol was determined. Both MMCK and BBCK increased SKPK activity; neither MMCK nor BBCK increased SMPK activity. The ability to form diazymatic complexes with creatine kinase appears to reside in SKPK. This coupling may account for the increased flux through PK without significant substrate changes seen during skeletal muscle activation. This coupling will not occur in smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号