首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conotoxins comprise a diverse group of disulfide-rich peptides found in venoms of predatory Conus species. The native conformation of these peptides is marginally stable in comparison with alternative conformations, often resulting in low folding yields. The oxidative folding of hydrophobic delta-conotoxins was found to produce less than 1% of the native peptide [Bulaj, G. et al. (2001) Biochemistry 40, 13201]. In order to identify factors that might improve folding yields, we screened a number of additives including water-soluble polymers, detergents and osmolytes for their ability to increase steady-state accumulation of the native delta-conotoxin PVIA. The presence of a non-ionic detergent Tween and low temperature appeared to be the most effective factors in improving the oxidative folding. The detergent was also effective in promoting folding of other hydrophobic delta-conotoxins. Based on our findings, we discuss a possible mechanism for detergent-assisted folding and the general applicability of this mechanism to facilitating the proper folding of hydrophobic, cysteine-rich peptides.  相似文献   

2.
Most of the >50,000 different pharmacologically active peptides in Conus venoms belong to a small number of gene superfamilies. In this work, the M-conotoxin superfamily is defined using both biochemical and molecular criteria. Novel excitatory peptides purified from the venoms of the molluscivorous species Conus textile and Conus marmoreus all have a characteristic pattern of Cys residues previously found in the mu-, kappaM-, and psi-conotoxins (CC-C-C-CC). The new peptides are smaller (12-19 amino acids) than the mu-, kappaM-, and psi-conotoxins (22-24 amino acids). One peptide, mr3a, was chemically synthesized in a biologically active form. Analysis of the disulfide bridges of a natural peptide tx3c from C. textile and synthetic peptide mr3a from C. marmoreus showed a novel pattern of disulfide connectivity, different from that previously established for the mu- and psi-conotoxins. Thus, these peptides belong to a new group of structurally and pharmacologically distinct conotoxins that are particularly prominent in the venoms of mollusc-hunting Conus species. Analysis of cDNA clones encoding the novel peptides as well as those encoding mu-, kappaM-, and psi-conotoxins revealed highly conserved amino acid residues in the precursor sequences; this conservation in both amino acid sequence and in the Cys pattern defines a gene superfamily, designated the M-conotoxin superfamily. The peptides characterized can be provisionally assigned to four distinct groups within the M-superfamily based on sequence similarity within and divergence between each group. A notable feature of the superfamily is that two distinct structural frameworks have been generated by changing the disulfide connectivity on an otherwise conserved Cys pattern.  相似文献   

3.
Several families of peptide toxins from cone snails affect voltage-gated sodium (Na(V)) channels: mu-conotoxins block the pore, delta-conotoxins inhibit channel inactivation, and muO-conotoxins inhibit Na(V) channels by an unknown mechanism. The only currently known muO-conotoxins MrVIA and MrVIB from Conus marmoreus were applied to cloned rat skeletal muscle (Na(V)1.4) and brain (Na(V)1.2) sodium channels in mammalian cells. A systematic domain-swapping strategy identified the C-terminal pore loop of domain-3 as the major determinant for Na(V)1.4 being more potently blocked than Na(V)1.2 channels. muO-conotoxins therefore show an interaction pattern with Na(V) channels that is clearly different from the related mu- and delta-conotoxins, indicative of a distinct molecular mechanism of channel inhibition.  相似文献   

4.
A molluscivorous Conus toxin: conserved frameworks in conotoxins   总被引:7,自引:0,他引:7  
We purified and characterized a 27 amino acid toxin from a snail-hunting Conus venom, Conus textile. This toxin causes convulsive-like activity in snails and causes subordinate lobsters to assume an exaggerated dominant posture. The sequence of this peptide is Trp-Cys-Lys-Gln-Ser-Gly-Glu-Met-Cys-Asn-Leu-Leu-Asp-Gln-Asn-Cys-Cys-Asp- Gly-Tyr-Cys-Ile-Val-Leu-Val-Cys-Thr. The sequence was confirmed by determining the nucleotide sequence of a cDNA clone coding for the peptide. The conservation of Cys residues compared to the omega-conotoxins from piscivorous Conus venom suggests that toxins from different cone venoms may use only a few "Cys-motifs" as conserved structural backbones for targeting to a variety of receptors in different animals.  相似文献   

5.
Various neurotoxic peptides modulate voltage-gated sodium (Na(V)) channels and thereby affect cellular excitability. Delta-conotoxins from predatory cone snails slow down inactivation of Na(V) channels, but their interaction site and mechanism of channel modulation are unknown. Here, we show that delta-conotoxin SVIE from Conus striatus interacts with a conserved hydrophobic triad (YFV) in the domain-4 voltage sensor of Na(V) channels. This site overlaps with that of the scorpion alpha-toxin Lqh-2, but not with the alpha-like toxin Lqh-3 site. Delta-SVIE functionally competes with Lqh-2, but exhibits strong cooperativity with Lqh-3, presumably by synergistically trapping the voltage sensor in its "on" position.  相似文献   

6.
A 26 residue peptide (Am 2766) with the sequence CKQAGESCDIFSQNCCVG-TCAFICIE-NH(2) has been isolated and purified from the venom of the molluscivorous snail, Conus amadis, collected off the southeastern coast of India. Chemical modification and mass spectrometric studies establish that Am 2766 has three disulfide bridges. C-terminal amidation has been demonstrated by mass measurements on the C-terminal fragments obtained by proteolysis. Sequence alignments establish that Am 2766 belongs to the delta-conotoxin family. Am 2766 inhibits the decay of the sodium current in brain rNav1.2a voltage-gated Na(+) channel, stably expressed in Chinese hamster ovary cells. Unlike delta-conotoxins have previously been isolated from molluscivorous snails, Am 2766 inhibits inactivation of mammalian sodium channels.  相似文献   

7.
Constant and hypervariable regions in conotoxin propeptides.   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

8.
Buczek P  Buczek O  Bulaj G 《Biopolymers》2005,80(1):50-57
Small disulfide-rich peptides are translated as larger precursors typically containing an N-terminal prepro sequence. In this study, we investigated the role of a propeptide in the oxidative folding of an extremely hydrophobic delta-conotoxin, PVIA. delta-Conotoxin PVIA (delta-PVIA) is a 29-amino acid neurotoxin stabilized by three disulfide bridges. Previous folding studies on delta-conotoxins revealed that their poor folding properties resulted from their hydrophobicity. However, low folding yields of delta-PVIA could be improved by the presence of a nonionic detergent, which acted as a chemical chaperone. delta-PVIA provided an attractive model to investigate whether the hydrophilic propeptide region could function as an intramolecular chaperone. A 58-amino acid precursor for delta-PVIA (pro-PVIA), containing the N-terminal propeptide covalently attached to the mature conotoxin, was synthesized using native chemical ligation. Oxidative folding of pro-PVIA resulted in a very low accumulation of the correctly folded form, comparable to that for the mature conotoxin delta-PVIA. Our results are in accord with the relevant data previously observed for alpha- and omega-conotoxins, indicating that conotoxin prepro sequences are so-called class II propeptides, which are not directly involved in the oxidative folding. We hypothesize that these propeptide regions may be important for interactions with protein folding catalysts and sorting receptors during the secretory process.  相似文献   

9.
Gamma-carboxyglutamate in a neuroactive toxin   总被引:6,自引:0,他引:6  
The venom of a fish-hunting cone snail (Conus geographus) contains a novel toxin, the "sleeper" peptide, which induces a sleep-like state in mice when injected intracerebrally. We demonstrate that this peptide contains 5 mol of gamma-carboxyglutamate (Gla) in 17 amino acids. The amino acid sequence of the sleeper peptide is Gly-Glu-Gla-Gla-Leu-Gln-Gla-Asn-Gln-Gla-Leu-Ile-Arg-Gla-Lys-Ser-Asn-NH2.  相似文献   

10.
A mollusk-specific toxin, TxVIIA, having potent paralytic activity was isolated from the venom of sea snail Conus textile (Fainzilber M et al., 1991, Eur J Biochem 202:589-595). The structure reported above was based upon amino acid analysis and the Edman degradation. We have recently reinvestigated this toxin employing some of the most novel techniques in mass spectrometry. We now report a revised structure based primarily on high-energy collision-induced dissociation analysis of the two Asp17-N peptides of the reduced, pyridinylethyl derivative representing the entire sequence using matrix-assisted laser desorption ionization (MALDI) as CGGYSTYC gamma VDS gamma CCSDNCVRSYCTLF-NH2 (gamma, gamma-carboxyglutamic acid or Gla). The N-terminus of the previous sequence was incorrect, apparently due to a side reaction of reduction and alkylation, which led to the erroneous assignment of Trp for the N-terminal residue. In addition, the last two C-terminal amino acids and the C-terminal amidation had not been detected. Also, a combination of electrospray ionization mass spectrometry and positive and negative ion MALDI mass spectrometry provided information on the molecular weights of the native and derivatized toxin and presence of two Gla residues. Thus, TxVIIA does not have an "unusual" sequence as previously reported, but in fact belongs to the conserved Cys framework for omega- and delta-conotoxins. However, the four net negative charges with the cysteine-rich structure of this revised sequence is highly unusual for conopeptides.  相似文献   

11.
五步蛇蛇毒金属蛋白酶cDNA的克隆和序列分析   总被引:3,自引:0,他引:3  
抽提五步蛇毒腺总RNA,通过反转录PCR(RT-PCR)扩增出五步蛇毒腺中一种低分子量金属蛋白酶(aculysinl)的cDNA,克隆到pGMT-vector并测定了全序列.推导其编码的蛋白质序列,发现aculysinl是以酶原形式合成的分泌蛋白,酶原包括信号肽、前肽、金属蛋白酶成熟肽和间隔肽4个部分.金属蛋白酶成熟肽与其它蛇毒金属蛋白酶相比,蛋白质一级结构具有一定的同源性,有一个保守的Zn2+结合位点:HEXXHXXGXXH.Aculysinl含有6个半胱氨酸,推测形成3对链内二硫键.五步蛇低分子量金属蛋白酶cDNA的克隆,为研究蛇毒金属蛋白酶结构与功能的关系,以及开发治疗血栓药物打下了良好的基础  相似文献   

12.
Here, we report the purification, amino acid sequence and a preliminary biological characterization of a peptide, sr7a, from the venom of Conus spurius, a vermivorous species collected in the Yucatan Channel, Mexico. The peptide consists of 32 amino acid residues (CLQFGSTCFLGDDDICCSGECFYSGGTFGICS&; &, amidated C-terminus) and contains six cysteines arranged in the pattern (C-C-CC-C-C) that characterizes the O-superfamily of conotoxins. This superfamily includes several pharmacological families (omega-, kappa-, muO-, delta- and gamma-conotoxins) that target Ca(2+), K(+), Na(+) and pacemaker voltage-gated ion channels. Compared with other O-conotoxins that were purified from venoms, this peptide displays sequence similarity with omega-SVIA (from Conus striatus), delta-TxVIA/B (from Conus textile), omega-CVID (from Conus catus) and kappa-PVIIA (from Conus purpurascens). At a dose of 250 pmol, peptide sr7a elicited hyperactivity when injected intracranially into mice and produced paralysis when injected into the pedal muscle of freshwater snails, Pomacea paludosa, but it had no apparent effect after intramuscular injection into the limpet Patella opea or the freshwater fish Lebistes reticulatus.  相似文献   

13.
The A-superfamily of conotoxins: structural and functional divergence   总被引:7,自引:0,他引:7  
The generation of functional novelty in proteins encoded by a gene superfamily is seldom well documented. In this report, we define the A-conotoxin superfamily, which is widely expressed in venoms of the predatory cone snails (Conus), and show how gene products that diverge considerably in structure and function have arisen within the same superfamily. A cDNA clone encoding alpha-conotoxin GI, the first conotoxin characterized, provided initial data that identified the A-superfamily. Conotoxin precursors in the A-superfamily were identified from six Conus species: most (11/16) encoded alpha-conotoxins, but some (5/16) belong to a family of excitatory peptides, the kappaA-conotoxins that target voltage-gated ion channels. alpha-Conotoxins are two-disulfide-bridged nicotinic antagonists, 13-19 amino acids in length; kappaA-conotoxins are larger (31-36 amino acids) with three disulfide bridges. Purification and biochemical characterization of one peptide, kappaA-conotoxin MIVA is reported; five of the other predicted conotoxins were previously venom-purified. A comparative analysis of conotoxins purified from venom, and their precursors reveal novel post-translational processing, as well as mutational events leading to polymorphism. Patterns of sequence divergence and Cys codon usage define the major superfamily branches and suggest how these separate branches arose.  相似文献   

14.
We report the purification and characterization of a new conotoxin from the venom of Conus radiatus. The peptide, alphaS-conotoxin RVIIIA (alphaS-RVIIIA), is biochemically unique with respect to its amino acid sequence, post-translational modification, and molecular targets. In comparison to other nicotinic antagonists from Conus venoms, alphaS-RVIIIA exhibits an unusually broad targeting specificity for nicotinic acetylcholine receptor (nAChR) subtypes, as assayed by electrophysiology. The toxin is paralytic to mice and fish, consistent with its nearly irreversible block of the neuromuscular nAChR. Similar to other antagonists of certain neuronal nAChRs, the toxin also elicits seizures in mice upon intracranial injection. The only previously characterized conotoxin from the S superfamily, sigma-conotoxin GVIIIA, is a specific competitive antagonist of the 5-HT3 receptor; thus, alphaS-RVIIIA defines a novel family of nicotinic antagonists within the S superfamily. All previously characterized competitive conotoxin nAChR antagonists have been members of the A superfamily of conotoxins. Our working hypothesis is that the particular group of fish-hunting Conus species that includes Conus radiatus uses the alphaS-conotoxin family to target the muscle nAChR and paralyze prey.  相似文献   

15.
A 2.4 kilobase cDNA for rat mitochondrial aspartate aminotransferase (E.C. 2.6.1.1.) was isolated and sequenced. The predicted presequence is 93% homologous to the presequences of the enzyme from pig and mouse. The predicted amino acid sequence of the mature enzyme differs from that determined directly by amino acid sequencing (Huynh, Q.K., Sakakibara, R., Watanabe, T., and Wada, H. (1981) J. Biochem. (Tokyo) 90, 863-875) at 13 amino acids residues. The most important difference is at position 140 where the cDNA encodes a tryptophanyl residue rather than the previously reported glycine. This critical residue is now seen to be conserved in all aspartate aminotransferases. The coding region of this cDNA was inserted into the plasmid cloning vector pKK233-2 and used to stably express an unfused precursor in Escherichia coli JM105.  相似文献   

16.
kappa-Conotoxin PVIIA (kappa-PVIIA), a 27-amino acid peptide with three disulfide cross-links, isolated from the venom of Conus purpurascens, is the first conopeptide shown to inhibit the Shaker K(+) channel (Terlau, H., Shon, K., Grilley, M., Stocker, M., Stühmer, W., and Olivera, B. M. (1996) Nature 381, 148-151). Recently, two groups independently determined the solution structure for kappa-PVIIA using NMR; although the structures reported were similar, two mutually exclusive models for the interaction of the peptide with the Shaker channel were proposed. We carried out a structure/function analysis of kappa-PVIIA, with alanine substitutions for all amino acids postulated to be key residues by both groups. Our data are consistent with the critical dyad model developed by Ménez and co-workers (Dauplais, M., Lecoq, A., Song, J. , Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Medeiros, C., Rowan, E. G., Harvey, A. L., and Ménez, A. (1997) J. Biol. Chem. 272, 4802-4809) for polypeptide antagonists of K(+) channels. In the case of kappa-PVIIA, Lys(7) and Phe(9) are essential for activity as predicted by Savarin et al. (Savarin, P., Guenneugues, M., Gilquin, B., Lamthanh, H., Gasparini, S., Zinn-Justin, S., and Ménez, A. (1998) Biochemistry 37, 5407-5416); these workers also correctly predicted an important role for Lys(25). Thus, although kappa-conotoxin PVIIA has no obvious sequence homology to polypeptide toxins from other venomous animals that interact with voltage-gated K(+) channels, there may be convergent functional features in diverse K(+) channel polypeptide antagonists.  相似文献   

17.
A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transL-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.  相似文献   

18.
A novel conus peptide ligand for K+ channels   总被引:1,自引:0,他引:1  
Voltage-gated ion channels determine the membrane excitability of cells. Although many Conus peptides that interact with voltage-gated Na(+) and Ca(2+) channels have been characterized, relatively few have been identified that interact with K(+) channels. We describe a novel Conus peptide that interacts with the Shaker K(+) channel, kappaM-conotoxin RIIIK from Conus radiatus. The peptide was chemically synthesized. Although kappaM-conotoxin RIIIK is structurally similar to the mu-conotoxins that are sodium channel blockers, it does not affect any of the sodium channels tested, but blocks Shaker K(+) channels. Studies using Shaker K(+) channel mutants with single residue substitutions reveal that the peptide interacts with the pore region of the channel. Introduction of a negative charge at residue 427 (K427D) greatly increases the affinity of the toxin, whereas the substitutions at two other residues, Phe(425) and Thr(449), drastically reduced toxin affinity. Based on the Shaker results, a teleost homolog of the Shaker K(+) channel, TSha1 was identified as a kappaM-conotoxin RIIIK target. Binding of kappaM-conotoxin RIIIK is state-dependent, with an IC(50) of 20 nm for the closed state and 60 nm at 0 mV for the open state of TSha1 channels.  相似文献   

19.
The vitamin K-dependent gamma-carboxylation of glutamate to gamma-carboxyglutamate was originally well characterized in the mammalian blood clotting cascade. gamma-Carboxyglutamate has also been found in a number of other mammalian proteins and in neuropeptides from the venoms of marine snails belonging to the genus Conus, suggesting wider prevalence of gamma-carboxylation. We demonstrate that an open reading frame from a Drosophila melanogaster cDNA clone encodes a protein with vitamin K-dependent gamma-carboxylase activity. The open reading frame, 670 amino acids in length, is truncated at the C-terminal end compared with mammalian gamma-carboxylase, which is 758 amino acids. The mammalian gene has 14 introns; in Drosophila there are two much shorter introns but in positions precisely homologous to two of the mammalian introns. In addition, a deletion of 6 nucleotides is observed when cDNA and genomic sequences are compared. In situ hybridization to fixed embryos indicated ubiquitous presence of carboxylase mRNA throughout embryogenesis. Northern blot analysis revealed increased mRNA levels in 12-24-h embryos. The continued presence of carboxylase mRNA suggests that it plays an important role during embryogenesis. Although the model substrate FLEEL is carboxylated by the enzyme, a substrate containing the propeptide of a Conus carboxylase substrate, conantokin G, is poorly carboxylated. Its occurrence in vertebrates, molluscan systems (i.e. Conus), and Drosophila and the apparently strong homology between the three systems suggest that this is a highly conserved and widely distributed post-translational modification in biological systems.  相似文献   

20.
Serine proteinases and Kunitz type inhibitors are widely represented in venoms of snakes from different genera. During the study of the venoms from snakes inhabiting Russia we have cloned cDNAs encoding new proteins belonging to these protein families. Thus, a new serine proteinase called nikobin was identified in the venom gland of Vipera nikolskii viper. By amino acid sequence deduced from the cDNA sequence, nikobin differs from serine proteinases identified in other snake species. Nikobin amino acid sequence contains 15 unique substitutions. This is the first serine proteinase of viper from Vipera genus for which a complete amino acid sequence established. The cDNA encoding Kunitz type inhibitor was also cloned. The deduced amino acid sequence of inhibitor is homologous to those of other proteins from that snakes of Vipera genus. However there are several unusual amino acid substitutions that might result in the change of biological activity of inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号