首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
Managed fallows which recover nutrients more rapidly than natural secondary vegetation may improve the performance of shifting agriculture systems operating under inadequately long fallow cycles. Our objective was to construct nutrient balances for the soil, vegetation, and litter compartments of six planted leguminous fallows and natural secondary vegetation during 53 months. The fallows were planted on a previously cultivated Ultisol (Acrisol) in the Peruvian Amazon and included:Centrosema macrocarpum (Centrosema),Pueraria phaseoloides (Pueraria),Stylosanthes guianensis (Stylosanthes),Desmodium ovalifolium (Desmodium),Cajanus cajan (Cajanus), andInga edulis (Inga). In addition, in the natural fallow treatment secondary vegetation was allowed to establish and grow naturally. Quantities of extractable P, K, Ca, and Mg, total N, and organic C in soil to a 45 cm depth, and macrouttrients in aboveground biomass, roots, and litter were estimated at fallow planting, at 8, 17, and 29 months afterward, and at fallow clearing (53 months). Total N stocks increased by 10% in the Stylosanthes, Desmodium, Pueraria, and Inga treatments, but changed little in the Cajanus, Centrosema and natural fallows. This difference was largely due to greater net increases in both soil and vegetation compartments in the former group of treatments. In the Inga, Desmodium, and natural fallows, total stocks of P and K at 53 months were about 40% to 80% greater and 12% greater, respectively, than initial values, but Ca and Mg stocks were reduced by 25% to 40%. In the other treatments, there was generally little change in P stocks, but large (30% to 60%) reductions in K, Ca, and Mg during the course of the fallow. Although there were net decreases of stocks of P, K, Ca, and Mg in soil in all treatments during the fallow, storage of P and K in vegetation and litter in the Inga, Desmodium, and natural fallows offset losses of these nutrients from soil. These treatments also tended to accumulate more Ca and Mg in biomass and litter than the other treatments. These results suggest that leguminous fallow vegetation that accumulates large amounts of biomass may increase N, P, and K stocks, but that incomplete recuperation of Ca and Mg may limit the sustainability of short-rotation fallow-based systems on acidic, infertile soils. ei]Section editor: G R Stewart  相似文献   

2.
Nutrient cycling within three Pinus sylvestris stands was studied in eastern Finland. The aim of the study was to determine annual fluxes and distribution of N, P, K, Ca, Mg, Zn, Fe, B, and Al in the research stands. Special emphasis was put on determining the importance of different fluxes, especially the internal cycle within the trees in satisfying the tree nutrient requirements for biomass production. The following nutrient fluxes were included, input; free precipitation and throughfall, output; percolation through soil profile, biological cycle; nutrient uptake from soil, retranslocation within trees, return to soil in litterfall, release by litter decomposition. The distribution of nutrients was determined in above- and belowground tree compartments, in ground and field vegetation, and in soil.The nitrogen use efficiencies were 181, 211 and 191 g of tree aboveground dry matter produced per g of N supplied by uptake and retranslocation in the sapling, pole stage and mature stands, respectively. Field vegetation was more efficient in nitrogen use than trees. Stand belowground/aboveground and fine root/coarse root biomass ratios decreased with tree age. With only slightly higher fine root biomass, almost three times more nitrogen had to be taken-up from soil for biomass production in the mature stand than in the sapling stand.The annual input-output balances of most nutrients were positive; throughfall contained more nutrients than was lost in mineral soil leachate. The sulphate flux contributed to the leaching of cations, especially magnesium, from soil in the mature stand.Retranslocation supplied 17–42% of the annual N, P and K requirements for tree aboveground biomass production. Precipitation and throughfall were important in transferring K and Mg, and also N in the sapling stand. Litterfall was an important pathway for N, Ca, Mg and micro nutrients, especially in the oldest stands.  相似文献   

3.
Nutrient imbalances of declining sugar maple (Acer saccharum Marsh.) stands in southeastern Quebec have been associated with high exchangeable Mg levels in soils relative to soil K and Ca. A greenhouse experiment was set up to test the hypothesis that the equilibrium between soil exchangeable K, Ca, and Mg ions influences the growth and nutrient status of sugar maple seedlings. Also tested was whether endomycorrhization can alter nutrient acquisition under various soil exchangeable basic cations ratios. Treatments consisted of seven ratios of soil exchangeable K, Ca, and Mg making up a total base saturation of 58%, and a soil inoculation treatment with the endomycorrhizal fungus Glomus versiforme (control and inoculated), in a complete factorial design. Sugar maple seedlings were grown for 3 months in the treated soils. Plant shoot elongation rate, dry biomass and nutrient concentrations in foliage were influenced by the various ratios of soil cations. The predicted plant biomass and foliar K concentration were highest at a soil Ca saturation of 38%, a soil K saturation of 12%, and a soil Mg saturation of 8%. Potassium concentration in foliage was dependent on the level of Ca and Mg saturation in the soil when soil K saturation was close to 12%. Foliar Ca and Mg levels were more dependent on their corresponding levels in soil than foliar K. Colonization by G. versiforme did not influence seedling growth and macronutrient uptake. The results confirm that growth and nutrition of sugar maple are negatively affected by imbalances in exchangeable basic cations in soils.  相似文献   

4.
Summary Sporocarps and sclerotia were collected for a one-year period in 23- and 180-year-old Abies amabilis stands in western Washington. All sporocarps were classified and chemically analyzed for N, P, K, Ca, Mg, Na and Fe. Lactarius sp. and Cortinarius sp. contributed the largest proportion of the total annual epigeous sporocarp production in both stands. Annual epigeous production was 34 kg/ha in the young stand and 27 kg/ha in the mature stand. Hypogeous sporocarp production increased from 1 kg ha-1 yr-1 to 380 kg ha-1 yr-1 with increasing stand age. High sclerotia biomass occurred in the young (2,300 kg/ha) and mature (3,000 kg/ha) stands. Peak sclerotia and epigeous sporocarp biomass in the young stand and epigeous and hypogeous sporocarp biomass in the mature stand coincided with the fall peak of mycorrhizal root biomass.In the young stand, sporocarps produced by decomposer fungi concentrated higher levels of Ca and Mn than those produced by mycorrhizal fungi. In the mature stand, sporocarps of decomposer fungi concentrated higher levels of N, P, Mn, Ca and Fe than sporocarps of mycorrhizal fungi. Epigeous and hypogeous sporocarps concentrated higher levels of N, P, and K than sclerotia or mycelium. The highest concentration of N (4.36%), P (0.76%), K (3.22%) and Na (1,678 ppm) occurred in epigeous sporocarps. Highest Mn (740 ppm) and Ca (20,600 ppm) concentrations occurred in mycelium, while highest Mg (1,929 ppm) concentrations were in hypogeous sporocarps and highest Fe (4,153 ppm) concentrations were in sclerotia.  相似文献   

5.
Rodenkirchen  H. 《Plant and Soil》1995,168(1):383-390
The effects of fertilization and amelioration treatments on some nutrient pools and fluxes of ground vegetation in mature pine and spruce stands on acid soils in South Germany are described. In N-limited pine forests with moderate canopy density and with Deschampsia flexuosa an additional N-accumulation in biomass of 20–40 kg ha-1 occurred 3 years after pure N-fertilization. The N, P, K-cycling through ground vegetation was stimulated more than 10 years by a combined N + CaCO3 + P treatment leading toa shift in dominance from cryptogams and Ericaceae towards Deschampsia flexuosa and ruderal species like Epilobium angustifolium. The effect of a lupine treatment (combined with initial soil preparation, liming and P supply) was far stronger than the effect of the other experimental procedures. But the fertilizer and amelioration effects on the herb layer of pine forests tended to decline after two decades for different reasons.The shade-tolerant ground vegetation in a nitrogen-saturated spruce forest was not able to prevent heavy additional nitrate losses from upper mineral soil after dolomitic liming. But the Ca, Mg and K fluxes through ground vegetation were strongly elevated in the third year after treatment.  相似文献   

6.
Forest ecosystems play dominant roles in global carbon budget because of the large quantities stored in live biomass, detritus, and soil organic matter. Researchers in various countries have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the relationship between stand age in different components (vegetation, forest floor detritus, and mineral soil) and C storage and sequestration remains poorly understood. In this paper, we assessed an age sequence of 18-, 20-, 25-, 38-, and 42-year-old Pinus tabulaeformis planted by analyzing the vertical distribution of different components biomass with similar site conditions on Mt. Taiyue, Shanxi, China. The results showed that biomass of P. tabulaeformis planted stands was ranged from 88.59 Mg ha?1 for the 25-year-old stand to 231.05 Mg ha?1 for the 42-year-old stand and the major biomass was in the stems. Biomass of the ground vegetation varied from 0.51 to 1.35 Mg C ha?1 between the five stands. The forest floor biomass increased with increasing stand age. The mean C concentration of total tree was 49.94%, which was higher than C concentrations of ground vegetation and forest floor. Different organs of trees C concentration were between 54.14% and 47.74%. C concentrations stored in the mineral soil for each stand experienced decline with increasing soil depth, but were age-independent. Total C storage of five planted forests ranged from 122.15 to 229.85 Mg C ha?1, of which 51.44–68.38% of C storage was in the soil and 28.46–45.21% in vegetation. The study provided not only with an estimation biomass of P. tabulaeformis planted forest in Mt. Taiyue, Shanxi, China, but also with accurately estimating forest C storage at ecosystem scale.  相似文献   

7.
Cycling of six mineral elements (N, P, K, Na, Ca and Mg) was studied in a humid subtropical grassland at Cherrapunji, north-eastern India during 1988-1989. Elemental concentrations in the shoot of four dominant grass species,viz., Arundinella khaseana, Chrysopogon gryllus, Eragrostiella leioptera andEulalia trispicata were very low, and none of the species appears suitable for fodder use. Among different vegetation compartments, live root was the largest reservoir of all the nutrients (except Ca) followed by live shoot, dead shoot, litter and dead root. For Ca, live shoot was the major storage compartment. The total annual uptake (kg ha-1) was 137.3, 10.4, 51.1, 5.5, 8.7 and 18.2 for N, P, K, Na, Ca and Mg, respectively. In an annual cycle 98% N, 77% P, 49% K, 109% Na, 87% Ca and 65% Mg returned to the soil through litter and belowground detritus. A major portion of N, P and Na was recycled through the belowground system, whereas nearly half of K, Ca and Mg was recycled through the shoot system. Precipitation acts as the source of N and P input, but at the same time causes loss of cations.  相似文献   

8.
Wilcke  W.  Lilienfein  J. 《Plant and Soil》2004,258(1):31-41
Conversion of native savanna in Brazil, the Cerrado, to agri- and silvicultural land use causes changes in metal storages of the ecosystems. To evaluate the sustainability of land use these changes have to be known. Therefore, we examined the Al, Ca, Fe, K, Mg, Mn, Na, and Zn storages in above- and belowground biomass, the organic layer, and the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots in each of six native and land-use systems. The systems were native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Brachiaria decumbens Stapf pastures, and conventional and no-tillage soybean cultivation. The total metal storage varied little among the studied systems except for Ca, K, and Mg. All land-use systems had larger Ca storages (cropping systems 202–205 g m–2, productive pasture: 112, degraded pasture: 84, Pinus: 81) than the Cerrado (62 g m–2). The K storage was smaller in the pastures (17–18 g m–2) than in Cerrado and Pinus stands (22–24) and largest in the cropping systems (26). The Mg storages were largest in the cropping systems (65–69) and productive pasture (59 g m–2); those in the Pinus stands (52), the degraded pasture (51), and the Cerrado (53) were similar. For most metals, the aboveground biomass contained up to 1% of the total storage including the top 2 m of the soil (<5% if the lower ecosystem boundary was set at 0.3 m soil depth). However, the aboveground biomass stored up to 12% of Ca, K, and Mg down to 2 m soil depth (41% if the lower ecosystem boundary was set at 0.3 m soil depth). In the Pinus stands, the storage of most metals was larger in the below- than in the aboveground biomass; for the other systems the reverse was true. Metal storages in soil were little affected by land use except that liming resulted in increased Ca and Mg storages in the topsoil. The comparison between known inputs of Ca, K, and Mg and mean annual change rates of their storages revealed that there were considerable base metal losses by leaching, grazing, and removal with the harvest. After 12–20 years, the land-use impact on metal storages is restricted to Ca, Mg, and K. Generally, all land-use systems tend to be richer in these nutrients except for the significant depletion in K of the pastures.  相似文献   

9.
Intensive weed control and plot preparation practices have become a critical and integral part of productive beech forest management in Turkey’s coastal Black Sea region (BSR). This study was conducted in an eastern beech forest of 100+ year old in the BSR to evaluate ecosystem effects of three different experimental Rhododendron ponticum understory control methods with a randomised block design, including manual grubbing, foliar and cut stump spraying with imazapyr (Arsenal) and foliar and cut stump spraying with triclopyr (Garlon). Untreated vegetation plots served as controls. Evaluation of these treatments included their effects on understory and forest floor biomass and nutrients (C, N, P, S, K, Ca and Mg) and effects on soils, including bulk density, pH, soil nutrients (C, N, P and S), exchangeable cations (K, Ca and Mg) and soil cation exchange capacity (CEC). Grubbing and imazapyr treatments had greatly reduced the amount of understory biomass 5 years after application (P = 0.002). Triclopyr treatment also had a major effect on understory vegetation control, but by 5 years later, about 10% of the rhododendron originally present on these plots had gradually re‐sprouted and partially covered the plots. Five years after woody vegetation control treatments, at the 0‐ to 20‐cm depth, treatments did not appear to affect soil bulk density, pH and CEC. For the upper 20‐cm soil depth, the exchangeable soil K concentration at the 10‐ to 20‐cm depth on triclopyr‐treated plots was 33% higher than on grubbing plots, and it was twice that of imazapyr application plots. Imazapyr plots had almost 11 times more dead organic matter on the forest floor than there was on grubbing plots. Forest floor C concentrations on imazapyr plots were 26 and 14% greater than those on grubbing and triclopyr plots, respectively. Total ecosystem (forest floor + understory + soil exchangeable) Ca content was 50% higher on imazapyr plots than that on triclopyr plots, while the ecosystem K pool on imazapyr treatment plots was 27% lower than that on triclopyr plots. Herbicides can be used as an alternative for achieving some forest management objectives when other vegetation control methods are not feasible or economical. It is recommended that vegetation control not be used on steep slopes because of greater risk of soil erosion. There may be benefits in encouraging slash disposal by fire after imazapyr treatments, thus removing recalcitrant understory residues left on the forest floor and releasing the essential nutrients within them.  相似文献   

10.
Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha−1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y−1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha−1 y−1 for hardwood stands and from 0.9 to 2.3 Mg ha−1 y−1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems.  相似文献   

11.
The relationship between vegetational type and a number of soil chemical factors was examined in secondary successions from fire-maintained eucalypt/grass to climax rainforest communities growing on uniform granitic soil parent material. Canonical variates analysis, which utilized the following variables: pH; loss on ignition; total N, P, K, Ca, and Mg; cation exchange capacity and exchangeable Ca, K, and Mg; and potentially mineralizable N, revealed close overall similarity between surface soils of adjacent types, and significant differences among those of types distant from each other in the successional sequences. Exchangeable Ca, mineralizable N, total N. P, and Mg, and pH all differed significantly among soils of the vegetational types. However, the only identifiable gradients in soil properties that were detected within a successional sequence were in total and mineralizable N, which tended to increase, and pH, which generally tended to decrease with progression towards the climax vegetation. Nitrification was promoted by the presence of Acacia dealbata and apparently inhibited by the presence of Leptospermum lanigerum; it was more rapid in soils beneath late successional vegetation than in those from climax vegetation or early stages of succession, and was inhibited in soil from old (> 200 years) grassland. It was concluded that differences among soils in chemical composition and rates of mineralization of N were due to differences in species composition of the vegetational types that they carried for the time being.  相似文献   

12.
林地覆盖经营对雷竹鞭根主要养分内循环的影响   总被引:1,自引:0,他引:1  
陈珊  陈双林  郭子武 《生态学报》2015,35(17):5788-5796
为了给林地覆盖经营雷竹(Phyllostachys violascens)林可持续经营提供理论参考,探讨了休养式覆盖经营(覆盖3a后休养3a)、长期覆盖经营(覆盖6a)和不覆盖雷竹林(CK)2年生壮龄竹鞭及其1级、2级根N、P、K、Mg、Ca、Fe浓度和养分迁移、内循环率的差异。结果表明:不同覆盖经营年限雷竹林N、P、K、Mg、Ca和Fe浓度总体上1级根显著高于2级根。1级根和2级根中均存在N、P、K、Mg的养分内循环,且1级根养分内循环率大于2级根,Fe、Ca内循环不明显。N、P、K、Mg养分浓度与养分迁移速率随时间的推延,1级根为持续降低,2级根为先升高后降低。与不覆盖雷竹林相比,休养式林地覆盖经营总体上提高了1级、2级根的N、P、K、Ca的浓度和P、K、Mg的迁移速率、N、P、K的迁移量、P、K的养分内循环率以及1级根Mg的浓度和迁移量、2级根N的迁移速率和Mg的内循环率;长期林地覆盖经营虽提高了雷竹1级根N、K的浓度和N的迁移量及2级根N的浓度和内循环率,但总体上降低了1级根P、K、Mg和2级根N、P、Mg的迁移量与1级、2级根P、Mg的迁移速率及P、K、Mg的养分内循环率。研究表明:雷竹林鞭根中存在明显的养分内循环,且1级根对养分内循环的贡献较大。休养式林地覆盖经营利于雷竹林对养分的循环利用,而长期覆盖经营阻碍了根系对养分的平衡吸收,减弱了根系养分的内循环,不利于雷竹林的生长更新。  相似文献   

13.
The importance of litter to nutrient and organic matter storage and the possible influence of species selection on soil fertility in ten stands each consisting of a separate tree species were examined in this study. The plantations had been grown under similar conditions in an arboretum in the Luquillo Experimental Forest, Puerto Rico. The species involved were: Anthocephalus chinensis, Eucalyptus × patentinervis, E. saligna, Hernandia sonora, Hibiscus elatus, Khaya nyasica, Pinus caribaea var. hondurensis, P. elliottii var. densa, Swietenia macrophylla, and Terminalia ivorensis. After 26 yr, litter mass ranged from 5 mg ha-1 in the H. sonora stand to 27.2 Mg ha-1 in the P. caribaea stand. Nutrients in the litter (N, P, K, Ca, and Mg) also varied widely, but stands were ranked in different order when ranked by nutrients in the litter than then ranked according to accumulation of mass. Only E. saligna and A. chinensis stands were ranked similarly in accumulation of both nutrients and mass, and the stand of H. elatus was ranked higher with respect to nutrient accumulation than to accumulation of mass. The nutrient concentration in standing leaf litter generally increased in the order of recently fallen <old intact< fragmented. Nutrient concentration of standing leaf litter appears to increase with age and depth in the litter layer. The amount of nutrients stored in the litter compartment of these plantations was in the same order of magnitude as the quantity of available nutrients in the top 10-cm of mineral soil. Total litter mass was negatively correlated with the mass-weighted concentration of N, K, and Mg. The same relationship was found for Ca in the leaf litter and N in the fine wood litter compartments. In some stands (notably P. caribaea, P. elliottii, and E. saligna), leaf litter derived from species other than the species planted in that particular stand had higher nutrient concentration than leaf litter from the planted species. Soils of the 10 stands were classified in the same soil series and had similar texture (clay soils). However, significantly different chemical characteristics were found. Results obtained by analysis of covariance and by limiting comparisons to adjacent stands with similar soil texture, indicate that different species have had different influences on the concentration of available nutrients in soil.  相似文献   

14.
Large earthen-walled lysimeters at the San Dimas Experimental Forest in southern California present a unique opportunity to assess vegetation effects on biogeochemical processes and cation release by weathering in controlled soil-vegetation systems where archived samples of soil parent material are available for comparison. The lysimeters were filled in 1937 with homogenized fine sandy loam derived on site from the weathering of diorite, and planted in 1946 with scrub oak (Quercus dumosa) and Coulter pine (Pinus coulteri). Changes in base cation contents were measured in above-ground biomass, and total and exchangeable soil pools to a depth of 1 meter. All cations in the non-exchangeable soil pool decreased relative to the initial fill material, indicating release by weathering. Sodium and K were depleted from both exchangeable and non-exchangeable pools of the soils. Plant uptake of Na was minimal, whereas K storage in vegetation exceeded the loss from the exchangeable soil pool. In both soil-vegetation systems, but especially for oak, there was an increase in exchangeable Ca and Mg. For all base cations, storage in above-ground biomass was greater for oak, whereas losses by weathering from the non-exchangeable soil pool were greater under pine. Strong evidence supports biocycling as a controlling mechanism resulting in greater Ca and Mg release by weathering under pine. In addition, decreases in non-exchangeable Ca and Mg were strongly correlated to decrease in Si under oak, whereas no correlation was observed under pine. We conclude that weathering reactions or stoichiometry differed between vegetation types.Corresponding author  相似文献   

15.
This study is aimed at retention of K, Na, Mg, and Ca in two constructed wetlands (CWs) in the Czech Republic, and on the evaluation of particular standing stocks in both above- and belowground plant biomass. The study revealed that CWs with horizontal subsurface flow are not effective in retention of studied elements. Removal of K, Na, Mg, and Ca averaged only 10.6, 7.4, 6.1, and 1.4%, respectively. In general, concentrations of studied elements in various parts of Phragmites australis and Phalaris arundinacea were found within the range of concentrations reported from both natural and CWs. Aboveground standing stocks for K, Na and Mg were comparable with those reported from natural stands for both Phalaris and Phragmites, but Ca aboveground standing stocks found in our study were lower compared to those found in several natural Phragmites wetlands. Aboveground to belowground standing stock ratio was generally >1.0. However, this amount formed usually <1% of the annual inflow load of particular elements. The results of this study provide comprehensive information on retention and sequestration of K, Na, Mg, and Ca in vegetation during municipal wastewater treatment in CWs with subsurface horizontal flow.  相似文献   

16.
Summary Pole sized stands ofPopulus tremuloides Michx.,Picea glauca (Moench.) Voss,Pinus resinosa Ait., andPinus banksiana Lamb., were sampled on both a very fine sandy loam and a loamy sand. Relative species ranking in above-ground tree biomass (Pinus resinosa>Populus>Picea>Pinus banksiana) and above-ground tree nutrient (N, P, K, Ca, Mg) weights (Populus>Picea>Pinus resinosa>Pinus banksiana) were similar on both soils. Particularly large proportions of biomass and nutrients were found in aspen bark and spruce foliage and branches on both soils. Harvesting entire above-ground trees would remove up to three times more nutrients than would harvesting only the bole.Herbs and shrubs had less than 3% of the total vegetation organic matter but contributed as much as one-half of the total annual litterfall nutrients. Litterfall weights and nutrient concentrations, and especially forest floor nutrients, were all less on the loamy sand. Nutrients in the rooting zone of the loamy sand were 12 to 29% less than in the very fine sandy loam except for P which averaged 24% higher. On both soils, exchangeable Ca in the surface soil was much lower under Populus and Picea than under the pines, owing to species differences in uptake and apparently slow release of Ca by weathering.Ca in the above-ground Populus amounted to 18% (very fine sandy loam) to 25% (loamy sand) of the exchangeable Ca in the total complex. Intensive utilization of this species in particular could stress the Ca economy of these sites.This article was written and prepared by U.S. Government employees on official time; it is therefore in the public domain.Principal Silviculturist and Research Soil Scientist, resp.  相似文献   

17.
在云南喀斯特地区,为提升退化灌木群落的生态系统服务功能,营造了不同树种的人工林分。这些人工林分如何影响土壤化学性质还未得到充分认识。以云南泸西县灌木群落及三种常见人工林(云南松(Pinus yunnanensis)、赤杨(Alnus japonica)和侧柏(Platycladus orientalis))土壤为研究对象探讨喀斯特地区在人工林建造后土壤的13种元素全量、可利用性含量和化学计量学特征变异格局,为喀斯特石漠化治理提供理论依据。结果表明,1)基于判别分析,四种群落土壤化学计量特征可以显著区分。土壤Fe、P、K、Mn全量及交换性Ca、交换性Mg和NH_4~+-N对区分四种群落土壤贡献最大。2)四种群落之间相比,侧柏林土壤C、N、S、Na全量和NO_3~--N含量均低于其他三种群落,土壤肥力较低;赤杨林铵态氮含量最高;云南松林有效Fe、有效Cu含量/N、C素具有显著相关性,占所有元素对数的38.5%,说明该地土壤元素积累的相互依赖性。与灌木群落相比,人工林土壤元素全量和可利用性含量相关性比例均更高。这些研究结果对今后基于适地适树人工林营造、生态系统服务功能提升和经营利用,均具有重要指导意义。  相似文献   

18.
对密云水库北京集水区板栗林主要养分元素循环进行了研究。结果表明,22年生板栗林的生物量为38638kg·hm-2;板栗林5种主要养分元素N、P、K、Ca、Mg贮存量为315.38kg·hm-2,各器官中5种元素贮存量大小排序是干>枝>根>叶>花>果苞>果。板栗林生态系统乔木层每年从土壤中吸收的5种养分元素量为79.17kg·hm-2,吸收量占0~30cm土层5种养分元素总量的0.15%,占0~30cm土层中5种元素有效养分量的1.95%。年吸收量中存留量为11.25kg·hm-2,枯落物归还量为58.08kg·hm-2。雨水及雨水淋溶输入到板栗林生态系统的养分元素量为38.63kg·hm-2,果实输出量为9.84kg·hm-2。雨水和雨水淋溶量与枯落物归还量之和大于吸收量,表明研究期间板栗林生态系统养分元素的收入略大于支出,5种元素的吸收系数排序为N>P>K>Ca>Mg,利用系数排序为K>N>Mg>P>Ca。循环系数排序为K>N>P>Mg>Ca。周转期排序是Ca>P>Mg>N>K。  相似文献   

19.
The immediate effect of burning and ash-fertilization   总被引:1,自引:0,他引:1  
Summary Changes in the vegetation and soil store of major nutrients were followed under the local practice of shifting cultivation. Changes in the soil store of N, P, K, Ca, Mg and Na were recorded under recently cleared forest before, 24 hours, and 40 days after the burning of vegetation of known biomass and chemical composition.The immediate increase of K and the delayed increase of P in the upper 50 cm—although equal to the content of the above-ground vegetation before burning—is not to be explained by the ash-fertilization alone. The immediate increase of K after burning was not observed after 40 days at any depth, and less Ca and Mg were found in the topsoil immediately after the burning and after 40 days, than before. Apparently mobilization and/or diffusion due to heat are important factors, even in the deeper horizons.  相似文献   

20.
Ten pairs of secondary pure spruce (Picea abies) and adjacent mixed spruce-beech (Fagus sylvatica) stands on comparable sites were selected on two different bedrocks for soil formation (Flysch: nutrient rich and high soil pH; Molasse: poor nutrient supply and acidic) to study how an admixture of beech to spruce stands affects nutrient cycling and consequently soil chemistry. Soil analyses indicated accumulation of Ca under the mixed stands while the top soil under pure spruce was acidified. It was hypothesized that changes of soil chemical properties due to species composition over the last six decades are reflected in the stem wood of spruce. Three healthy dominant spruce trees per plot were selected for coring. Cores were crossdated and half-decadal samples were analyzed for Ca, Mg, Mn and Al. Calcium and Mg concentrations in stem wood of spruce were significantly higher for the pure spruce than for the mixed stands in spite of lower Ca and Mg stores in the soil. We assume that acidification caused by pure spruce mobilized these cations temporarily, increasing soil solution contents and consequently stem wood concentrations. It was possible to reconstruct soil pH from the element ratios Ca/Al (pure stands) and Ca/Mg (mixed stands), since these ratios in the stem wood of the last half-decade did correlate with soil pH for selected soil depths. Reconstructed soil pH showed a decline over the last 60 years under both species compositions due to accumulation of base cations in the increasing biomass. Comparisons of reconstructed soil pH in 0–5 and 10–20 cm soil depth indicated more pronounced top soil acidification (lower soil pH in 0–5 cm) by spruce on the nutrient rich soil (Flysch) than on the acidic soil (Molasse). However, admixture of beech caused higher pH values in 0–5 cm than in 10–20 cm soil depth on Flysch due to the observed Ca-pump effect of beech (uptake of Ca from deeper soil horizons).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号