首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
双侧颈总动脉结扎对大鼠学习记忆相关脑区血流量的影响   总被引:3,自引:0,他引:3  
目的为建立双侧颈总动脉结扎致大鼠血管性痴呆模型,观察了大鼠双侧颈总动脉结扎后不同脑区脑血流量的影响。方法采用激光多普勒血流仪,测定麻醉大鼠双侧颈总动脉结扎后10min内不同脑区脑血流量变化。结果大鼠双侧颈总动脉结扎后,平均脑血流量减少额区6783%、顶区5682%、枕区1616%、Mynert基底核5121%、尾壳核4118%,海马CA15183和海马CA24121。结论大鼠双侧颈总动脉结扎后与学习记忆有关的脑区脑血流量均显著下降  相似文献   

2.
Abstract— Incomplete cerebral ischemia (oligemia) was produced in cat by carotid occlusion combined with arterial hypotension. Lowering arterial pressure to 50–60 Torr for 20 min caused marked alterations of the ATP, phosphocreatine, and lactate content of subcortical white matter. In contrast, metabolite levels in cerebral cortex and caudate nucleus were only moderately perturbed from control values. More severe oligemia resulted when arterial pressure was lowered to 30 Torr for 20 min following carotid occlusion. Metabolite levels in cortex, caudate nucleus, and white matter were greatly altered from control. In the gray matter there was regional heterogeneity of metabolic alteration, as evidenced from the pattern of NADH tissue fluorescence. The cortex contained micro-patches (0.1mm) of increased NADH, which frequently exhibited a columnar orientation.
These findings demonstrate two distinct types of cerebral inhomogeneity of metabolic failure with reduced blood flow; white matter fails before gray matter, and there is micro-heterogeneity of metabolic failure in the gray matter.  相似文献   

3.
The effect of bilateral cerebral ischemia on noradrenaline, dopamine, and serotonin concentrations in six brain regions (i.e., the cerebral cortex, striatum, hippocampus, midbrain-diencephalon, cerebellum, and pons-medulla oblongata) was examined in the gerbil stroke model. The relative changes in regional cerebral blood flow after bilateral common carotid occlusion were also assessed using the radioactive microsphere technique. At 1 h after bilateral carotid occlusion, a significant decrease of monoamine concentration was observed in the cerebral cortex, striatum, hippocampus, and midbrain-diencephalon whereas no significant change was detected in the cerebellum and pons-medulla oblongata. The fall in NA content was most prominent in the cerebral cortex and hippocampus and percentage reductions of dopamine and serotonin were greatest in the striatum and cerebral cortex, respectively. These results suggest that the monoamine neurons in various brain regions might have different vulnerabilities to ischemic insult and show no evidence of transtentorial diaschisis.  相似文献   

4.
Cerebrovascular CO2 reactivity was studied in 40 healthy subjects (HSs) and 40 patients suffering from cerebrovascular disorders (CVD). Transcranial Doppler (TCD) sonography was used to investigate MCA flow velocity modifications during PaCO2 changes induced by ventilatory rate modifications and closed-circuit air re-breathing. HS responses were correlated with age, whereas the roles of either multiple ischemic brain lesions or carotid occlusions were studied in the Pt group. Results were as follows: i) age did not prove to affect vasomotor response to PaCO2 variations; ii) in hypercapnia, patients with multifocal ischemic lesions showed an impaired response in both hemispheres, whereas altered vasoreactivity was unilateral in patients with carotid occlusion (and ipsilateral to the thrombosis); iii) no significant differences were found between HS and Pt responses in hypocapnia. These findings confirm previous reports obtained with the 133 Xenon technique, stressing the usefulness of cerebrovascular reactivity investigation in CVD pts for diagnostic and prognostic purposes.  相似文献   

5.
目的:观察凝闭双侧椎动脉与夹闭双侧颈总动脉之间的不同时间间隔对Pulsinelli四血管闭塞法全脑缺血模型的影响、以及在凝闭单侧椎动脉的基础上夹闭双侧颈总动脉后的脑缺血的特点。方法:84只Wistar大鼠.随机分为以下4组:对照组、双侧椎动脉凝闭组、全脑缺血组、单侧椎动脉凝闭+双侧颈总动脉夹闭组。全脑缺血组中,根据凝闭双侧椎动脉与夹闭双侧颈总动脉之间的时间间隔不同,又分为24h间隔、48h间隔和72h间隔3个亚组。观察大鼠脑缺血过程中的反应包括瞳孔散大、对光反射等情况,脑缺血后恢复翻正反射所需要的时间、以及动物的一般状况,并应用硫堇染色法观察海马CA1区锥体神经元迟发性死亡的情况:结果:全脑缺血72h间隔亚组的大鼠,脑缺血过程中的反应、脑缺血后的一般状况和锥体神经元迟发性死亡程度均明显重于全脑缺血24h间隔亚组及48h间隔亚组,但24h间隔亚组与48h间隔亚组之间无显著差异一单侧椎动脉凝闭+双侧颈总动脉夹闭组大鼠的凝闭侧瞳孔散大、对光反射消失、海马CA1区神经元大量死亡;而未凝闭侧未见上述相关变化。结论:凝闭双侧椎动脉本身也具有脑缺血预处理样作用,对其后48h内夹闭双侧颈总动脉所致的严重脑缺血具有一定程度的保护作用;大鼠椎动脉对脑干及海马的血液供应均存在明显的同侧优势效应,  相似文献   

6.
In the present investigation we studied the synaptosomal uptake of glutamate in brain omogenate of Mongolian gerbils submitted to bilateral common carotid occlusion, with and without subsequent return of blood flow. The results show that glutamate uptake after ischemia is reduced by about 35% The damage appears to be persistent, since return of blood flow restores uptake only slightly. The membrane alterations occurring in ischemia could explain the persistence of glutamate transporter impairment. Besides the blockade of NMDA receptors, the stimulation and/or the protection of the uptake systems for glutamate could be of help in preventing neuronal ischemic damage.  相似文献   

7.
In this study we have examined the influence of bilateral carotid occlusion on intrarenal blood flow distribution. Using labeled microspheres to determine intrarenal hemodynamics, bilateral carotid ligation in mannitol or saline expanded dogs resulted in an increase in outer cortical blood flow and a decrease in inner cortical flow. Total renal blood flow and glomerular filtration rate did not change significantly during carotid occlusion whereas the average mean arterial blood pressure rose from 130 to 166 mmHg. Inner cortical flow resistance increased substantially after carotid occlusion; outer cortical resistance was unchanged. These results suggest that bilateral carotid occlusion selectively activates inner cortical renal sympathetic fibers.  相似文献   

8.
Chronic restriction of cerebral blood flow in hypoperfused Wistar rats has been proposed as a new model of cerebrovascular-type dementia. Using this model, we have investigated central monoaminergic neuronal systems that are closely related to higher brain function. Monoamine and monoamine-metabolite levels were determined, as relative monoaminergic markers, at 1 day and 1,3,6 and 12 weeks after the bilateral occlusion of common carotid arteries. Dopaminergic changes in the frontal cortex and striatum were observed in hypoperfused rats at 1–3 weeks following occlusion. Serotonergic changes were recognized at four brain regions examined (frontal cortex, hippocampus, striatum and thalamus+midbrain). In particular, the immediate enhancement of serotonin turnover in the striatum appeared to influence the reaction to the acute ischemic attack such as vasoconstriction produced by hypoperfusion. Our findings suggest that chronic cerebral hypoperfusion induces transient reversible changes in central monoaminergic neuronal function within three weeks of ligation of carotid arteries. This time interval seems to represent a turning point in the process of chronic cerebral hypoperfusion-induced progressive brain injury.  相似文献   

9.
Ascending pathways mediating somatoautonomic reflexes in exercising dogs   总被引:1,自引:0,他引:1  
The ascending spinal pathways mediating somatocardiovascular reflexes during exercise were studied in unanesthetized dogs by placing lesions in the lumbar spinal cord. After training to run on a treadmill with hindlimbs only, 20 dogs were anesthetized and instrumented using sterile surgical techniques. To chronically record heart rate and arterial blood pressure, the aorta was cannulated via the omocervical artery. To test the intactness of descending spinal sympathetic pathways, reflex pressor responses to baroreceptor hypotension were produced by bilateral carotid arterial occlusion using pneumatic vessel occluders placed around the common carotid arteries. To generate transient ischemic exercise (120 s), a pneumatic occluder was placed around the left iliac artery. Eight to 10 days after instrumentation, blood pressure and heart rate were monitored at rest and during hindlimb running with and without simultaneous iliac arterial occlusion. The modest pressor response and tachycardia elicited by hindlimb exercise were markedly augmented by simultaneous hindlimb ischemia (i.e., iliac arterial occlusion). Lesion placement in the dorsolateral sulcus area and the dorsolateral funiculus at L2 significantly reduced the blood pressure and heart rate responses to simultaneous exercise occlusion. The cardiovascular responses to nonischemic exercise and bilateral carotid arterial occlusion were not altered by such spinal sections. It is concluded that in the dog the ascending spinal pathways mediating cardiovascular responses to ischemic exercise are located in the lateral funiculus, including the dorsolateral sulcus area and dorsolateral funiculus.  相似文献   

10.
The lack of efficient neuroprotective strategies for neonatal stroke could be ascribed to pathogenic ischemic processes differentiating adults and neonates. We explored this hypothesis using a rat model of neonatal ischemia induced by permanent occlusion of the left distal middle cerebral artery combined with 50 min of occlusion of both common carotid arteries (CCA). Postconditioning was performed by repetitive brief release and occlusion (30 s, 1 and/or 5 min) of CCA after 50 min of CCA occlusion. Alternative reperfusion was generated by controlled release of the bilateral CCA occlusion. Blood-flow velocities in the left internal carotid artery were measured using color-coded pulsed Doppler ultrasound imaging. Cortical perfusion was measured using laser Doppler. Cerebrovascular vasoreactivity was evaluated after inhalation with the hypercapnic gas or inhaled nitric oxide (NO). Whatever the type of serial mechanical interruptions of blood flow at reperfusion, postconditioning did not reduce infarct volume after 72 hours. A gradual perfusion was found during early re-flow both in the left internal carotid artery and in the cortical penumbra. The absence of acute hyperemia during early CCA re-flow, and the lack of NO-dependent vasoreactivity in P7 rat brain could in part explain the inefficiency of ischemic postconditioning after ischemia-reperfusion.  相似文献   

11.
In 8 baboons maintained under propofol anaesthesia, transcallosal evoked responses were recorded from the primary motor cortex following electrical stimulation of the contralateral homotopic cortical surface. The corpus callosum was made ischaemic by transorbital occlusion of the common anterior cerebral artery; blood flow (measured by the hydrogen clearance method) in the stimulating and recording regions was not significantly affected by this procedure. The transcallosal responses from the normally perfused brain contained early positive (P1) and negative (N1) components. As stepwise ischaemia was produced in the corpus callosum, the amplitude of P1 initially increased up to 150% of control and the peak latency of P1 was significantly prolonged. At flows below 8 ml/100/g/min the amplitude rapidly decreased. Wave form changes and flow threshold of N1 were similar to those of P1. These results suggest that measurement of early transcallosal responses could be useful clinically as monitors of the ischaemic level in anterior cerebral artery territory.  相似文献   

12.
Corticotropin-releasing factor (CRF) induces the dilatation of cerebral blood vessels and increases cerebral blood flow (CBF). CRF receptor antagonists reduce ischaemic damage in the rat. In the present study, the expression of CRF around cerebral vessels has been investigated in the rat. No CRF immunoreactivity was identified around pial or intracerebral vessels in the absence of cerebral ischaemia. Four hours after middle cerebral artery occlusion (MCAo), intensely CRF-positive blood vessels were evident on the ischaemic cortical surface and in the peri-infarct and infarct zone. Increased CRF immunoreactivity was also detected in swollen axons in subcortical white matter, caudate nucleus and lateral olfactory tract of the ipsilateral hemisphere, consistent with the failure of axonal transport. These data provide morphologic support for a role of CRF in the pathophysiology of cerebral ischaemia.  相似文献   

13.
Using a sensitive radiometric assay for determination of catecholamines, the α-methyl-para-tyrosine-induced catecholamine disappearance was studied in discrete brain regions of rats after acute hypotension. The decrease in blood pressure was induced either by controlled haemorrhage or by the administration of guanethidine. In both cases an increase of the α-methyl-para-tyrosine-induced noradrenaline disappearance was observed in the nucleus commissuralis and the A1-region in the medulla oblongata. In the paraventricular nucleus the disappearance of noradrenaline as well as that of adrenaline was enhanced. The results are in support for the involvement of catecholamines in particular brain regions in the regulation of blood pressure.  相似文献   

14.
顾正中  李民进 《动物学报》1993,39(2):203-208
实验在麻醉及人工呼吸的7只衰老与7只成年SD大鼠上进行。观察脑血管对高、低血碳酸和高、低血氧的脑血液反应,探索衰老动物脑血流反应最为敏感的因素。结果表明,衰老动物对高血碳酸的反应最为敏感,对其余化学因素的反应均不明显。由此提示,对高血碳酸的脑血流反应的测定似可作为诊断衰老脑血管机能状态的一项有参考价值的生理学方法。  相似文献   

15.
Effects of stimulation of the claustrum and caudate nucleus in the neocortex and various deep brain structures were studied in acute experiments on unanesthetized cats immobilized with tubocurarine. A rhythmic after discharge appeared in neocortical areas 4–7 and 18 (according to Reinoso-Suarez' atlas), and also in the caudate nucleus and various parts of the thalamus. A similar discharge also was observed in the claustrum itself. Diencephalic brain section at the level of the ventral anterior nucleus weakened but did not completely abolish the cortical rhythmic after-discharge in the anterior regions of the neocortex evoked by stimulation of the claustrum. This discharge was completely blocked after sagittal brain section between the claustrum and the rest of the thalamus.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 15, No. 2, pp. 121–127, March–April, 1983.  相似文献   

16.
Microanalysis methods were used to determine the effect of bilateral carotid occlusion on net levels of energy metabolites in discrete cellular regions of the hippocampus and dentate gyrus of the Mongolian gerbil. Glucose, glycogen, ATP and phosphocreatine levels were not decreased after one minute of bilateral occlusion. Three minutes of ischemia, however, produced a dramatic fall in net levels with no further decrease observed at fifteen minutes. Re-establishment of blood flow for five minutes after a fifteen minute ischemic episode resulted in replenishment of metabolites to pre-ischemic levels. Glucose was increased two to three times in sham-operated animals as compared to control (non-operated) animals. The increase was the result of the Na-pentobarbital anesthetic employed. The present data indicate that regions of the hippocampus and dentate gyrus respond in a uniform manner to bilateral occlusion of the carotid arteries. Further, most cells maintained enough viability to resume production of high-energy phosphate and carbohydrate metabolites.  相似文献   

17.
Eicosapentaenoic acid is converted by cyclo-oxygenase to the prostacyclin, PGI3. Consequently eicosapentaenoic acid might protect the brain from the impairment in cerebral blood flow that follows temporary cerebral arterial occlusion. We studied the effect of 90% pure eicosapentaenoic acid, given intravenously, on cerebral blood flow, brain water and prostaglandins after ischemia in gerbils. Ischemia was produced by bilateral carotid occlusion for 15 min followed by reperfusion for 2 h. In experimental gerbils, 0.833 mg or 0.167 mg of eicosapentaenoic acid (Na salt) was given intravenously followed by a continuous infusion of 1 mg h-1. Control gerbils were given 0.167 mg of linoleic acid (Na salt) intravenously followed by a continuous infusion of 1 mg h-1 or a saline infusion. Regional cerebral blood flow was measured by the hydrogen clearance method and brain water by the specific gravity technique. Brain diene prostaglandins were measured by radioimmunoassay. In control gerbils cerebral blood flow decreased significantly during reperfusion and remained depressed after 2 h of reperfusion. In eicosapentaenoic acid treated gerbils blood flow decreased initially but after 2 h of reperfusion blood flow was significantly higher than in control gerbils. Brain edema and brain diene prostaglandins were not significantly different between control and experimental groups. Our study indicates that eicosapentaenoic acid, given intravenously, improves cerebral blood flow after ischemia and reperfusion. We speculate that this effect may be due to the formation of the prostacyclin, PGI3.  相似文献   

18.
Bilateral occlusion of the common carotid arteries of urethane-anesthetized rats evoked a pressor response of 14 ± 1 mm Hg. Injection into the lateral cerebral ventricle of neostigmine (0.2–1.0 μg) or physostigmine (10–15 μg) caused a dose-dependent increase in basal blood pressure and in the magnitude of the carotid artery occlusion (CAO) pressor reflex. Neostigmine (1 μg) and physostigmine (15 μg) caused nearly maximal and approximately equal degrees of cholinesterase inhibition in several brain regions. The recovery of the cardiovascular parameters and of brain cholinesterase activity was significantly faster following physostigmine compared to neostigmine. Prior intracerebroventricular injection of atropine (0.3 μg) or hemicholinium-3 (20 μg) prevented the increases in basal pressure and the CAO pressor response. Potentiation of the CAO reflex also followed injection of physostigmine or neostigmine into the posterior hypothalamic nucleus and of injection of physostigmine intravenously. Injection of atropine bilaterally into the posterior hypothalamic nucleus prior to intravenous injection of physostigmine prevented the potentiation of the CAO reflex but not the increase in basal blood pressure. These results indicate that acetylcholine in the posterior hypothalamic nucleus serves as a neurotransmitter in a pathway which can potentiate the pressor response to carotid artery occlusion and thus modulate baroreceptor reflexes.  相似文献   

19.
Eicosapentaenoic acid is converted by cyclo-oxygenase to the prostacyclin, PGI3. Consequently eicosapentaenoic acid might protect the brain from the impairment in cerebral blood flow that follows temporary cerebral artirial occlusion. We studied the effect of 90% pure eicosapentaenoic acid, given intravenously, on cerebral blood flow, brain water and prostaglandins after ischemia in gerbils. Ischemia was produced by bilateral carotid occlusion for 15 min followed by reperfusion for 2 h. In experimental gerbils, 0.833 mg or 0.167 mg of eicosapentaenoic acid (Na salt) was given intravenously followed by a continuous infusion of 1 mg h−1. Control gerbils were given 0.167 mg of linoleic acid (Na salt) intravenously followed by a continuous infusion of 1 mg h−1 or a saline infusion. Regional cerebral blood flow was measured by the hydrogen clearance method and brain water by the specific gravity technique. Brain diene prostaglandins were measured by radioimmunoassay. In control gerbils cerebral blood flow decreased significantly during reperfusion and remained depressed after 2 h of reperfusion. In eicosapentaenoic acid treated gerbils blood flow decreased initially but after 2 h of reperfusion blood flow was significantly higher than in control gerbils. Brain edema and brain diene prostaglandins were not significantly different between control and experimental groups.Our study indicates that eicosapentaenoic acid, given intravenously, improves cerebral blood flow after ischemia and reperfusion. We speculate that this effect may be due to the formation of the prostacyclin, PGI3.  相似文献   

20.
Transfer function analysis of blood pressure and cerebral blood flow in humans demonstrated that cerebrovascular autoregulation operates most effectively for slow fluctuations in perfusion pressure, not exceeding a frequency of approximately 0.15 Hz. No information on the dynamic properties of cerebrovascular autoregulation is available in rats. Therefore, we tested the hypothesis that cerebrovascular autoregulation in rats is also most effective for slow fluctuations in perfusion pressure below 0.15 Hz. Normotensive Wistar-Kyoto rats (n = 10) were instrumented with catheters in the left common carotid artery and jugular vein and flow probes around the right internal carotid artery. During isoflurane anesthesia, fluctuations in cerebral perfusion pressure were elicited by periodically occluding the abdominal aorta at eight frequencies ranging from 0.008 Hz to 0.5 Hz. The protocol was repeated during inhibition of myogenic vascular function (nifedipine, 0.25 mg/kg body wt iv). Increases in cerebral perfusion pressure elicited initial increases in cerebrovascular conductance and decreases in resistance. At low occlusion frequencies (<0.1 Hz), these initial responses were followed by decreases in conductance and increases in resistance that were abolished by nifedipine. At occlusion frequencies of 0.1 Hz and above, the gains of the transfer functions between pressure and blood flow and between pressure and resistance were equally high in the control and nifedipine trial. At occlusion frequencies below 0.1 Hz, the gains of the transfer functions decreased twice as much under control conditions than during nifedipine application. We conclude that dynamic autoregulation of cerebral blood flow is restricted to very low frequencies (<0.1 Hz) in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号