首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric stem cell division is a mechanism widely employed by the cell to maintain tissue homeostasis, resulting in the production of one stem cell and one differentiating cell. However, asymmetric cell division is not limited to stem cells and is widely observed even in unicellular organisms as well as in cells that make up highly complex tissues. In asymmetric cell division, cells must organize their intracellular components along the axis of asymmetry (sometimes in the context of extracellular architecture). Recent studies have described cell asymmetry in many cell types and in many cases such asymmetry involves the centrosome (or spindle pole body in yeast) as the center of cytoskeleton organization. In this review, I summarize recent discoveries in cellular polarity that lead to an asymmetric outcome, with a focus on centrosome function.Key words: stem cell, asymmetric division, niche, centrosome, spindle orientation  相似文献   

2.
《朊病毒》2013,7(2):84-88
Asymmetric stem cell division is a mechanism widely employed by the cell to maintain tissue homeostasis, resulting in the production of one stem cell and one differentiating cell. However, asymmetric cell division is not limited to stem cells and is widely observed even in unicellular organisms as well as in cells that make up highly complex tissues. In asymmetric cell division, cells must organize their intracellular components along the axis of asymmetry(sometimes in the context of extracellular architecture). Recent studies have described cell asymmetry in many cell types, and in many cases such asymmetry involves the centrosome (or spindle pole body in yeast) as the center of cytoskeleton organization. In this review, I summarize recent discoveries in cellular polarity that lead to an asymmetric outcome, with a focus on centrosome function.  相似文献   

3.
4.
5.
6.
7.
Mechanisms of asymmetric stem cell division   总被引:3,自引:0,他引:3  
Knoblich JA 《Cell》2008,132(4):583-597
Stem cells self-renew but also give rise to daughter cells that are committed to lineage-specific differentiation. To achieve this remarkable task, they can undergo an intrinsically asymmetric cell division whereby they segregate cell fate determinants into only one of the two daughter cells. Alternatively, they can orient their division plane so that only one of the two daughter cells maintains contact with the niche and stem cell identity. These distinct pathways have been elucidated mostly in Drosophila. Although the molecules involved are highly conserved in vertebrates, the way they act is tissue specific and sometimes very different from invertebrates.  相似文献   

8.
E Knust 《Cell》2001,107(2):125-128
Asymmetric cell division depends on the polarization of the dividing cell for the correct alignment of the mitotic spindle and the localization of cytoplasmic determinants. Receptor-independent activation of heterotrimeric G proteins by the Drosophila GoLoco protein Partner of Inscuteable seems to represent a novel mechanism to control these events.  相似文献   

9.
Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.  相似文献   

10.
Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes ‘old’ from ‘new’ and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish ‘old’ from ‘new’ and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.  相似文献   

11.
12.
13.
Abstract. Mitotic cells in normal, mature rat corneal epithelium were examined with a light microscope on serial, semi-thick plastic sections.
Classification of mitotic figures into horizontally, obliquely or vertically positioned with reference to the epithelial basal lamina has shown that no single configuration predominates. A striking correlation between the position of the daughter cells after cytokinesis and their morphology has been observed. Horizontal cytokinetic pairs were morphologically symmetric but vertical ones were asymmetric, displaying distinct differences between daughter cells. Analysis of earlier mitotic phases has shown that the asymmetry could also be observed in vertical anaphases and telophases.
The data provide clear morphological evidence for real asymmetric (unequal) cell division in a replacing epithelium in an adult mammal. It is concluded that asymmetric cell division in the corneal epithelium coexists with, and is as frequent as symmetric (equal) cell division. Randomness of mitotic spindle positioning implies that diverse forms of cell transfer from the proliferative into the differentiative epithelial compartments must operate. Therefore, the universality of the general model of cell renewal in stratified epithelia, which assumes a strong predominance of horizontal mitoses, exclusively equal mitotic divisions and one form of cell transfer, is questioned.  相似文献   

14.
During development one mechanism for generating different cell types is asymmetric cell division, by which a cell divides and contributes different factors to each of its daughter cells. Asymmetric cell division occurs through out the eukaryotic kingdom, from yeast to humans. Many asymmetric cell divisions occur in a defined orientation. This implies a cellular mechanism for sensing direction, which must ultimately lead to differences in gene expression between two daughter cells. In this review, we describe two classes of molecules: regulatory factors that are differentially expressed upon asymmetric cell division, and components of a signal transduction pathway that may define cell polarity. The lin-11 and mec-3 genes of C. elegans, the Isl-1 gene of mammals and the HO gene of yeast, encode regulatory factors that determine cell type of one daughter after asymmetric cell division. The CDC24 and CDC42 genes of yeast affect both bud positioning and orientation of mating projections, and thus may define a general cellular polarity. We speculate that molecules such as Cdc24 and Cdc42 may regulate expression of genes such as lin-11, mec-3, Isl-1 and HO upon asymmetric cell division.  相似文献   

15.
Asymmetric cell divisions are central to the generation of cell-fate diversity because factors that are present in a mother cell and distributed unequally at cell division can generate distinct daughters. The process o f asymmetric cell division can be described as consisting of three steps: setting up an asymmetric cue in the mother cell, localizing factors with respect to this cue, and positioning the plane o f cell division so that localized factors are partitioned asymmetrically between daughters. This review describes how specialized cortical domains play a key role in each of these steps and discusses our current understanding of the molecular nature o f cortical domains and the mechanisms by which they may orchestrate asymmetric cell divisions.  相似文献   

16.
Symmetric and asymmetric cell division in rat corneal epithelium   总被引:3,自引:0,他引:3  
Mitotic cells in normal, mature rat corneal epithelium were examined with a light microscope on serial, semi-thick plastic sections. Classification of mitotic figures into horizontally, obliquely or vertically positioned with reference to the epithelial basal lamina has shown that no single configuration predominates. A striking correlation between the position of the daughter cells after cytokinesis and their morphology has been observed. Horizontal cytokinetic pairs were morphologically symmetric but vertical ones were asymmetric, displaying distinct differences between daughter cells. Analysis of earlier mitotic phases has shown that the asymmetry could also be observed in vertical anaphases and telophases. The data provide clear morphological evidence for real asymmetric (unequal) cell division in a replacing epithelium in an adult mammal. It is concluded that asymmetric cell division in the corneal epithelium coexists with, and is as frequent as symmetric (equal) cell division. Randomness of mitotic spindle positioning implies that diverse forms of cell transfer from the proliferative into the differentiative epithelial compartments must operate. Therefore, the universality of the general model of cell renewal in stratified epithelia, which assumes a strong predominance of horizontal mitoses, exclusively equal mitotic divisions and one form of cell transfer, is questioned.  相似文献   

17.
Li R 《Developmental cell》2010,19(5):639-640
Asymmetric cell division--where two dissimilar daughter cells are produced--relies on asymmetric positioning of the telophase spindle midzone, which specifies the cleavage furrow. Ou et al. (2010) now report in Science a mechanism of asymmetric midzone positioning driven by a polarized cortical distribution of the contractile motor myosin-II.  相似文献   

18.
For proper tissue morphogenesis, cell divisions and cell fate decisions must be tightly and coordinately regulated. One elegant way to accomplish this is to couple them with asymmetric cell divisions. Progenitor cells in the developing epidermis undergo both symmetric and asymmetric cell divisions to balance surface area growth with the generation of differentiated cell layers. Here we review the molecular machinery implicated in controlling asymmetric cell division. In addition, we discuss the ability of epidermal progenitors to choose between symmetric and asymmetric divisions and the key regulatory points that control this decision.  相似文献   

19.
20.
In the embryonic central nervous system of the fruit fly Drosophila, most neurons and glial cells are generated by asymmetric division of neural stem cells called neuroblasts. Several genes have been identified that are required for the establishment of neuroblast polarity, for the asymmetric segregation of cell fate determinants and for the proper orientation and geometry of the mitotic spindle. However, little was known about the interactions between these genes and their respective gene products. It has emerged that most of the relevant proteins are assembled into three major protein complexes whose molecular interactions are conserved in evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号