首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 140 base-pair DNA segment situated just upstream of the kanamycin resistance gene of transposon Tn2350, a transposon carried by the plasmid R1, was found to act as an origin of replication and allow autonomous replication of a plasmid composed only of the segment and of the tetracycline resistance gene of pBR322. This segment also promotes site-specific recombination: when cloned in pBR322 it promotes multimer formation in a recA- strain. If two copies are cloned on the same plasmid they promote either deletion or inversion of the intervening region, depending on their orientation relative to each other. DNA gyrase seems to be involved in this process since the inversion rate, in a plasmid carrying sequences in opposite orientations, varies in different nalidixic acid-resistant strains (gyr A mutants) independently isolated.  相似文献   

2.
A derivative of Tn5 with direct terminal repeats can transpose   总被引:9,自引:0,他引:9  
The 5.7 kb4 transposable kanamycin resistance determinant Tn5 contains 1.5 kb terminal inverted repeats which we here call arms. Tn5's arms contain the genes and sites necessary for Tn5 transposition, and are not homologous to previously described transposable elements. To determine whether one or both arms is a transposable (IS) element, we transposed Tn5 to pBR322 and used restriction endonuclease digestion and ligation in vitro to generate plasmid derivatives designated pTn5-DR1 and pTn5-DR2 in which Tn5's arms were present in direct rather than in inverted orientation. Analysis of transposition products from dimeric forms of the pTn5-DR1 plasmid to phage λ showed that the outside and inside termini of right and of left arms could function in transposition. We conclude that both of Tn5's arms are transposable elements and name them IS50L (left) and IS50R (right). IS50R, which encodes transposase, was used several-fold more frequently than IS50L, which contain an ochre mutant allele of transposase: this implies that Tn5's transposase acts preferentially on the DNA segment which encodes it. Analysis of transpositions of the amprkanr element Tn5-DR2 to the lac operon showed that Tn5-DR2, like Tn5 wild-type, exhibits regional preference without strict site specificity in the choice of insertion sites.  相似文献   

3.
Tn1525, a kanamycin R determinant flanked by two direct copies of IS15   总被引:6,自引:0,他引:6  
We have isolated plasmid pIP112 (IncI1) from Salmonella panama and characterized by restriction endonucleases analysis and by recombinant DNA techniques a transposable element designated Tn1525. This 4.44 kilobase (kb) transposon confers resistance to kanamycin by synthesis of an aminoglycoside phosphotransferase (3') (5") type I and contains two copies of IS15 (1.5 kb) in direct orientation. The modular organisation of Tn1525 offers the possibility for intramolecular homologous recombination between the two terminal direct repeats and thus accounts for the in vivo structural lability of plasmid pIP112: instability of kanamycin resistance and tandem amplification of the kanamycin determinant. Other transposons mediating resistance to kanamycin by the same enzymatic mechanism were analysed by agarose and polyacrylamide gel electrophoresis, following digestion with restriction endonucleases, and by Southern hybridizations. These comparisons indicate that, although the structural genes for the phosphotransferases are homologous, Tn1525 differs from Tn903 and Tn2350 and is closely related but distinct from Tn6. Using the same techniques Tn1525 was detected on plasmids belonging to different incompatibility groups and originating from various species of Gram-negative clinical isolates. These results indicate that Tn1525 is representative of a new family of class I composite transposons already spread in diverse pathogenic bacterial genera.  相似文献   

4.
Plasmid R1drd-19 is present in a small number of copies per cell of Escherichia coli. The plasmid was reduced in size by in vivo as well as in vitro (cloning) techniques, resulting in a series of plasmid derivatives of different molecular weight. All plasmids isolated contain a small region (about 2 x 10(6) daltons of deoxyribonucleic acid) of the resistance transfer factor part of the plasmid located close to one of the IS1 sequences that separates the resistance transfer factor part from the resistance determinant. All these derivatives were present at the same copy number, retained the incompatibility properties of plasmid R1drd-19, and were stably maintained during cell division. Genes mutated to yield copy mutations also were found to be located in the same region.  相似文献   

5.
Horizontal transfer of resistance determinants amongst bacteria can be achieved by conjugative plasmid DNA elements. We have determined the complete 274,762 bp sequence of the incompatibility group H (IncH) plasmid R478, originally isolated from the Gram negative opportunistic pathogen Serratia marcescens. This self-transferable extrachromosomal genetic element contains 295 predicted genes, of which 144 are highly similar to coding sequences of IncH plasmids R27 and pHCM1. The regions of similarity among these three IncH plasmids principally encode core plasmid determinants (i.e., replication, partitioning and stability, and conjugative transfer) and we conducted a comparative analysis to define the minimal IncHI plasmid backbone determinants. No resistance determinants are included in the backbone and most of the sequences unique to R478 were contained in a large contiguous region between the two transfer regions. These findings indicate that plasmid evolution occurs through gene acquisition/loss predominantly in regions outside of the core determinants. Furthermore, a modular evolution for R478 was signified by the presence of gene neighbors or operons that were highly related to sequences from a wide range of chromosomal, transposon, and plasmid elements. The conjugative transfer regions are most similar to sequences encoded on SXT, Rts1, pCAR1, R391, and pRS241d. The dual partitioning modules encoded on R478 resemble numerous sequences; including pMT1, pCTX-M3, pCP301, P1, P7, and pB171. R478 also codes for resistance to tetracycline (Tn10), chloramphenicol (cat), kanamycin (aphA), mercury (similar to Tn21), silver (similar to pMG101), copper (similar to pRJ1004), arsenic (similar to pYV), and tellurite (two separate regions similar to IncHI2 ter determinants and IncP kla determinants). Other R478-encoded sequences are related to Tn7, IS26, tus, mucAB, and hok, where the latter is surrounded by insLKJ, and could potentially be involved in post-segregation killing. The similarity to a diverse set of bacterial sequences highlights the ability of horizontally transferable DNA elements to acquire and disseminate genetic traits through the bacterial gene pool.  相似文献   

6.
We identified and characterized four different recombination mechanisms involved in the cointegrative transfer of the Neisseria gonorrhoeae beta-lactamase plasmid pSJ5.2 by the gonococcal 41 kb tet(M) and the Gram negative self-transmissible plasmids N3 and R64 drd-33 using an Escherichia colirecA-background. Mobilization of pSJ5.2 by the tet(M) plasmid occurred by cointegration through a replicative transposition of two IS1 elements inserted upstream from the beta-lactamase gene of pSJ5.2 and creating a IS1::beta-lactamase hybrid promoter. Two types of recombinational events occurred within the 1.8 kb BamH1-HindIII fragment of pSJ5.2 with the N3 and R64 plasmids. A non-homologous recombination was found at coordinates 1817 and 2849 of pSJ5.2 with sequences from R64. A non-homologous recombination combined with an IS26-mediated one-ended transposition was found at coordinates 1817 and 3010 of pSJ5.2 with N3. In both recombinational events, a deletion of over 1 kb of pSJ5.2 occurred. The fourth recombination event was detected in the 1.0 kb BamH1-HindIII fragment of pSJ5.2 by homologous recombination between DNA from the truncated Tn3 resolvase gene of pSJ5.2 and the resolvase sequences from R64 and N3.  相似文献   

7.
This study characterizes the 21.4 kilobase plasmid pECTm80 isolated from Escherichia coli strain 80, an α hemolytic human clinical diarrhoeal isolate (serotype O108:H-). DNA sequence analysis of pECTm80 revealed it belonged to incompatibility group X1, and contained plasmid partition and toxin-antitoxin systems, an R6K-like triple origin (ori) replication system, genes required for replication regulation, insertion sequences IS1R, ISEc37 and a truncated transposase gene (Tn3-like ΔtnpA) of the Tn3 family, and carried a class 2 integron. The class 2 integron of pECTm80 contains an intact cassette array dfrA1-sat2, encoding resistance to trimethoprim and streptothricin, and an aadA1 gene cassette truncated by the insertion of IS1R. The complex plasmid replication system includes α, β and γ origins of replication. Pairwise BLASTn comparison of pECTm80 with plasmid pE001 reveals a conserved plasmid backbone suggestive of a common ancestral lineage. Plasmid pECTm80 is of potential clinical importance, as it carries multiple genes to ensure its stable maintenance through successive bacterial cell divisions and multiple antibiotic resistance genes.  相似文献   

8.
Tn1935, a 23.5-kb transposon mediating resistance to ampicillin, kanamycin, mercury, spectinomycin, and sulfonamide was isolated from pZM3, an IncFIme virulence plasmid from Salmonella wien. Tn1935 possesses the entire sequence of Tn21 and contains two additional DNA segments of 0.95 and 2.7 kb carrying the ampicillin and kanamycin resistance genes, respectively. The latter is part of a composite element since it is flanked by two IS15-like insertion sequences (IS1936) in direct orientation. IS1936 is about 800 bp long and is closely related to IS15 delta, IS26, IS46, IS140, and IS176. Functional analysis of IS1936-mediated cointegrates shows that both insertion sequences are active and able to form cointegrates at the same frequency. Resolution of the cointegrates requires the presence of the host Rec system. The presence of the composite IS1936-element within Tn1935 supports the hypothesis that multidrug resistance transposons evolved by insertion of antibiotic determinants which are themselves transposable.  相似文献   

9.
Insertion element IS102 resides in plasmid pSC101.   总被引:8,自引:4,他引:4       下载免费PDF全文
In vivo recombination was found to occur between plasmid pHS1, a temperature-sensitive replication mutant of pSC101 carrying tetracycline resistance, and plasmid ColE1 after selection for tetracycline resistance at the restrictive temperature, 42 degrees C. Extensive analysis of the physical structures of three of these recombinant plasmids, using restriction endonucleases and the electron microscope heteroduplex method, revealed that the plasmid pHS1 was integrated into different sites on ColE1. The recombinant plasmids contained a duplication of a unique 1-kilobase (kb) sequence of pHS1 in a direct orientation at the junctions between the two parental plasmid sequences. This was confirmed by comparing the nucleotide sequence of the recombinants and their parental plasmids. Nucleotide sequence analysis further revealed that nine nucleotides at the site of recombination of ColE1 were duplicated at the junction of each of the 1-kb sequences. The formation of recombinants was independent of RecA function. Based on our previous finding that a plasmid containing a deoxyribonucleic acid insertion (IS) element can recombine with a second plasmid to generate a duplication of the IS element, we conclude that the 1-kb sequence is an insertion sequence, which we named IS102. For convenience, we have also denoted the IS102 sequence as eta theta to assign the orientation of the sequence. Eighteen nucleotides at one end (eta end) were found to be repeated in an inverted orientation at the other end (theta end) of IS102. The nucleotide sequence of the eta end of the sequence was found to be identical to the sequence at the ends of the transposon Tn903, which is responsible for transposition of the kanamycin resistance gene.  相似文献   

10.
Plasmid R1drd-19 markedly improves the recombination deficiency of recB and recBrecC mutants of Escherichia coli K12 as measured by Hfr crosses and increases their resistance to uv inactivation. The effect correlates with the production of an ATP-dependent ds DNA exonuclease in recB/R1drd-19 cells. This paper further investigates the suppressive effect of plasmid R1drd-19 on the recB mutation of E. coli. The gene(s) responsible for the effect was localized to the 13.1-kb EcoRI-C fragment of the resistance transfer factor (RTF) portion of R1drd-19. The plasmid-encoded activity does not merely replace the RecBCD enzyme failure but differs in several significant ways. It promotes a hyper-recombinogenic phenotype, as judged by the phenomenon of super oligomerization of the tester pACYC184 plasmid in recB/R1drd-19 cells and two inter- and intramolecular plasmid recombination test systems. It is probably not inhibited by lambda Gam protein and does not restrict plating of T4gp2 mutant. No significant homology between the E. coli chromosomal fragment carrying recBrecCrecD genes and the EcoRI-C fragment of R1drd-19 was observed. It is suggested that the plasmid-encoded recombination activity is involved in a new minor recombination pathway (designated RecP, for Plasmid). RecP resembles in some traits the RecBCD-independent pathways RecE and RecF but differs in activity and perhaps substrate specificity from the main RecBCD pathway.  相似文献   

11.
R1162 is an 8.7-kilobase (kb) broad-host-range replicon encoding resistance to streptomycin and sulfa drugs. In vitro deletion of 1.8-kb DNA between coordinates 3.0 and 5.3 kb did not affect plasmid maintenance, but a Tn1 insertion at coordinate 6.3 kb led to a recessive defect in plasmid maintenance. The only cis-acting region necessary for plasmid replication appears to lie between the Tn1 insertion at coordinate 6.3 kb and a second Tn1 insertion at coordinate 6.5 kb. All R1162 sequences between position 6.5 kb and the EcoRI site at coordinate 8.7/0 kb were dispensible for replication in Escherichia coli and Pseudomonas putida. Plasmids carrying insertions in a variety of restriction sites in an R1162::Tn1 derivative were unstable in P. putida but stable in E. coli. Tn5 insertions in R1162 showed a hot spot at coordinate 7.5 kb. A Tn5 insertion at coordinate 8.2 kb appeared to mark the 3' end of the streptomycin phosphotransferase coding sequence. All R1162::Tn5 derivatives showed specific instability in Pseudomonas strains but not in E. coli. The instability could be relieved by internal deletions of Tn5 sequences. In the haloaromatic-degrading Pseudomonas sp. strain B13, introduction of an unstable R1162::Tn5 plasmid led to loss of ability to utilize m-chlorobenzoate as a growth substrate. Our results showed that alteration of plasmid sequence organization in nonessential regions can result in restriction of plasmid host range.  相似文献   

12.
The R-factor R1drd-19 mediates resistance to beta-lactam antibiotics via a beta-lactamase. A strain of Escherichia coli K-12 carrying R1drd-19 was grown at different growth rates by using different carbon sources. The specific rate of production of the R1 beta-lactamase increased linearly with the growth rate and with the gene dosage. The content of R1 deoxyribonucleic acid was estimated by alkaline sucrose gradient centrifugation and by analysis of the specific rate of beta-lactamase synthesis in nutritional shift-up experiments and was found to decrease fivefold when the growth rate was increased from 0.4 to 1.8 doublings per h. The number of R1 molecules per cell decreased from six to two in the same growth range. The presence of the plasmid affected the mean cell size significantly; at a growth rate of 0.4 doublings per h the R-+ cells were on the average 50% bigger than the R-minus cells, whereas the effect was less than 10% at a growth rate of 1.8 doublings per h. Several reports in the leterature state that the initiation mass of chromosome replication is constant. In this paper it is shown that the initiation mass of R1 replication is proportional to the growth rate. Thus, the replication of the plasmid R1 and of the chromosome are independently regulated processes. It is argued that plasmid replication is under negative control.  相似文献   

13.
C J Wrighton  P Strike 《Plasmid》1987,17(1):37-45
The kanamycin resistance determinant of the drug resistance plasmid NTP16 has been characterized by DNA sequencing and has been shown to possess all of the structural features of a transposable element. It is made up of a 1040-bp central region encoding a protein identical to the aminoglycoside 3'-phosphotransferase of Tn903, flanked by direct repeats of an element identical to IS26. This novel transposon has been designated Tn4352. Analysis of the host sequences flanking the transposon reveal that they are derived from a Tn3-like element, and contain no 8 base pair target size duplications which are normally created by the insertion of IS26-like elements. Comparison to the Tn3 sequence shows that the flanking sequences are noncontiguous within Tn3, with the clear implication that NTP16 has evolved from a similar plasmid encoding only ampicillin resistance (presumably NTP1) by the insertion of Tn4352 into the Tn3-like element, followed by a substantial deletion. The sequence analysis suggests that the initial insertion was into the tnpR gene of the ampicillin transposon, followed by a deletion extending to a specific site within tnpA.  相似文献   

14.
It was found that monomers of the pACYC184 plasmid undergo superoligomerization in a recB mutant of Escherichia coli K12 which is deficient in ATP-dependent RecBC nuclease and carries the drug resistance plasmid R1drd-19. The observed effect is specifically related to the ability of R1drd-19 to determine an ATP-dependent exonucleolytic activity which is functionally similar but not identical to the RecBC nuclease. The oligomerization of pACYC184 is accompanied by the formation of high-order circular structures, and this leads to elimination of the plasmid from cells growing under non-selective conditions.  相似文献   

15.
The RecBCD nuclease of Escherichia coli and "recombinase" determined by R1drd-19 plasmid (the latter is able to replace at least partially the indicated cellular enzyme) were shown to differ from each other in some essential features. The product encoded by the plasmid as distinct from RecBCD nuclease practically is not sensitive to inhibition by GamS protein of the lambda phage. Earlier, it was found that the presence of R1drd-19 plasmid in the recBC cells restores the level of the total ATP-dependent exonuclease activity because of appearance in such cells of a new exonuclease activity also ATP-dependent. The exonuclease activity determined by R1drd-19 plasmid was found to differ from the corresponding activity of the RecBCD enzyme. The plasmid enzyme was able to prevent reproduction of T4g2- mutant on recBC cells. The ability of the plasmid "recombinase" to some stimulation of intrachromosomal recombination in recA mutant witness to incomplete RecA-dependence of its function. No significant homology was registered between Escherichia coli DNA fragment containing the recB, recC, recD genes and the EcoRI-C-fragment of R1drd-19 carrying the sequences responsible for recombination and repair functions of the plasmid.  相似文献   

16.
Analysis of one of the regions of catabolic plasmid pP51 which encode chlorobenzene metabolism of Pseudomonas sp. strain P51 revealed that the tcbA and tcbB genes for chlorobenzene dioxygenase and dehydrogenase are located on a transposable element, Tn5280. Tn5280 showed the features of a composite bacterial transposon with iso-insertion elements (IS1066 and IS1067) at each end of the transposon oriented in an inverted position. When a 12-kb HindIII fragment of pP51 containing Tn5280 was cloned in the suicide donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida KT2442, Tn5280 was found to transpose into the genome at random and in single copy. The insertion elements IS1066 and IS1067 differed in a single base apir located in the inner inverted repeat and were found to be highly homologous to a class of repetitive elements of Bradyrhizobium japonicum and distantly related to IS630 of Shigella sonnei. The presence of the catabolic genes tcbA and tcbB on Tn5280 suggests a mechanism by which gene clusters can be mobilized as gene cassettes and joined with others to form novel catabolic pathways.  相似文献   

17.
The structure of R1drd19: a revised physical map of the plasmid   总被引:13,自引:0,他引:13  
We have analyzed derivatives of the plasmid R1drd19 carrying the transposon Tn10 by electron microscopy following denaturation and renaturation of the molecules, and by digestion with various restriction enzymes, gel electrophoresis and Southern blotting. We show: 1) that the published restriction map of R1drd19 is inconsistent with our results. We present a modified map which is consistent with our data. 2) that R1drd19 carries a single resident copy of the element IS10 which is normally associated with Tn10 as an inverted repeat, and 3) that R1drd19 carries three copies of the insertion element IS1 in the resistance determinant region.  相似文献   

18.
Summary Upon integration into the bacterial chromosome the drug resistance plasmid R100.1 often loses its tetracycline resistance character. We have analyzed an Hfr strain formed by such an integration and an R-prime plasmid derived from it. We find that integration took place within the Tn10 transposon, that the two IS10 sequences were retained, but that at least 80% of the transposon segment located between them, and carrying the tetracycline resistance genes, had been lost. We suggest that integration of R100.1 was mediated by an inverse transposition using the IS10 sequences.  相似文献   

19.
The citrate utilization (Cit+) transposon Tn3411 was shown to be flanked by directly repeated sequences (IS3411L and IS3411R) by restriction enzyme analysis and electron microscope observation. Cit- deletion mutants were frequently found to be generated in pBR322::Tn3411 by intramolecular recombination between the two copies of IS3411. The flanking IS3411 elements of Tn3411 were shown to be functional insertion sequences by Tn3411-mediated direct and inverse transposition. Tn3411-mediated inverse transposition from pBR322::Tn3411 to the F-plasmid derivative pED100 occurred more efficiently than that of direct transposition of the Cit+ determinant. This was thought to be due to the differential transposability of IS3411L and IS3411R in the transposition process. The frequency of transposition of IS3411 marked with a chloramphenicol resistance determinant was much higher than IS3411-mediated cointegrate formation, suggesting that replicon fusions are not essential intermediates in the transposition process of Tn3411 or IS3411. Spontaneous deletions occurred with high frequency in recA hosts. The spontaneous deletion promoted by homologous recombination between two IS3411 elements in Tn3411 was examined with deletion mutants.  相似文献   

20.
A new strategy was developed for rapid cloning of genes with a transposon mutation library. We constructed a transposon designated TnV that was derived from Tn5 and consists of the gene coding for neomycin phosphotransferase II as well as the replication origin of an Escherichia coli plasmid, pSC101, flanked by Tn5 inverted repeats (IS50L and IS50R). TnV can transpose to many different sites of DNA in E. coli and Myxococcus xanthus and confers kanamycin resistance (Kmr) to the cells. From the Kmr cells, one-step cloning of a gene which is mutated as a result of TnV insertion can be achieved as follows. Chromosomal DNA isolated from TnV-mutagenized cells is digested with an appropriate restriction enzyme, ligated, and transformed into E. coli cells with selection for Kmr. The plasmids isolated contain TnV in the target gene. The plasmid DNA can then be used as a probe for characterization of the gene and screening of clones from a genomic library. We used this vector to clone DNA fragments containing genes involved in the development of M. xanthus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号