首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this study was to develop a new rodent model that is capable of delineating the importance of mechanical loading on myosin heavy chain (MHC) isoform expression of the plantar and dorsi flexor muscles of the ankle. The essential components of this system include 1) stimulating electrodes that are chronically implanted into a muscle, allowing for the control of the activation pattern of the target muscle(s); 2) a training apparatus that translates the moment of the ankle into a linear force; and 3) a computer-controlled Cambridge 310 ergometer. The isovelocity profile of the ergometer ensured that the medial gastrocnemius (MG) produced forces that were > 90% of maximal isometric force (Po), and the eccentric contractions of the tibialis anterior (TA) were typically 120% of Po. Both the concentric and eccentric training programs produced statistically significant increases in the muscle mass of the MG (approximately 15%) and TA (approximately 7%) as well as a decrease in myofibrillar adenosinetriphosphatase activity. Both the white and red regions of the MG and TA exhibited significant increases in the relative content of the type IIa MHC and concomitant decreases in type IIb MHC expression. Although the red regions of the MG and red TA contained approximately 10% type I MHC, the training programs did not affect this isoform. It appears that when a fast-twitch muscle is stimulated at a high frequency (100 Hz) and required to contract either concentrically or eccentrically under high loading conditions, the expression of the type IIa MHC isoform will be upregulated, whereas that of the type IIb MHC will be concomitantly downregulated.  相似文献   

3.
4.
5.
6.
This study was aimed to achieve a definitive and unambiguous identification of fiber types in canine skeletal muscles and of myosin isoforms that are expressed therein. Correspondence of canine myosin isoforms with orthologs in other species as assessed by base sequence comparison was the basis for primer preparation and for expression analysis with RT-PCR. Expression was confirmed at protein level with histochemistry, immunohistochemistry, and SDS-PAGE combined together and showed that limb and trunk muscles of the dog express myosin heavy chain (MHC) type 1, 2A, and 2X isoforms and the so-called "type 2dog" fibers express the MHC-2X isoform. MHC-2A was found to be the most abundant isoform in the trunk and limb muscle. MHC-2X was expressed in most but not all muscles and more frequently in hybrid 2A-2X fibers than in pure 2X fibers. MHC-2B was restricted to specialized extraocular and laryngeal muscles, although 2B mRNA, but not 2B protein, was occasionally detected in the semimembranosus muscle. Isometric tension (P(o)) and maximum shortening velocity (V(o)) were measured in single fibers classified on the basis of their MHC isoform composition. Purified myosin isoforms were extracted from single muscle fibers and characterized by the speed (V(f)) of actin filament sliding on myosin in an in vitro motility assay. A close proportionality between V(o) and V(f) indicated that the diversity in V(o) was due to the different myosin isoform composition. V(o) increased progressively in the order 1/slow < 2A < 2X < 2B, thus confirming the identification of the myosin isoforms and providing their first functional characterization of canine muscle fibers.  相似文献   

7.
The purpose of this study was to investigate the role of chronic weight-bearing activity as the primary inducer of compensatory muscle growth and changes in myosin isoform expression in rodent fast-twitch plantaris muscle. Thus, female rats were subjected to the independent and simultaneous exposure of functional overload (induced via synergist removal) and hindlimb unweighting (suspension) for 6 wk. Groups (n = 7/group) consisted of normal-control (NC); overload (OV); normal-suspension (N-SUS); and overload-suspension (OV-SUS). Body weight of both suspension groups was significantly less than both the NC and OV groups (P less than 0.001). Compared with the NC group, normalized plantaris weight (mg/g body wt) of both the OV and OV-SUS groups was greater, whereas that of the N-SUS was lower (P less than 0.001). However, normalized plantaris weight was greater in OV compared with OV-SUS by 35% (P less than 0.001). Myofibril protein content (mg/g) and Ca2+-regulated myofibril adenosinetriphosphatase (ATPase) specific activity were similar for all groups except that ATPase was lower in the OV group compared with the other groups (P less than 0.05). Native myosin isoform analysis revealed a significant increase in the expression of slow and intermediate myosin and the repression of fast myosin 1 (Fm1) in OV compared with NC. This shift in expression was not as pronounced in the OV-SUS group. Interestingly, only traces of slow myosin were observed in the N-SUS group compared with the other groups. These results suggest that weight bearing is an essential component of the overload model for inducing significant increases in both muscle mass and slow myosin isoform expression. Second, lack of weight bearing, while not markedly affecting fast myosins, appears to repress the expression of slow myosin.  相似文献   

8.
We have previously shown that mitochondrial protein synthesis regulates myoblast differentiation, partly through the control of c-Myc expression, a cellular oncogene regulating myogenin expression and myoblast withdrawal from the cell cycle. In this study we provide evidence of the involvement of Calcineurin in this regulation. In C2C12 myoblasts, inhibition of mitochondrial protein synthesis by chloramphenicol decreases Calcineurin expression. Conversely, stimulation of this process by overexpressing the T3 mitochondrial receptor (p43) increases Calcineurin expression. Moreover, expression of a constitutively active Calcineurin (ΔCN) stimulates myoblast differentiation, whereas a Calcineurin antisense has the opposite effect. Lastly, ΔCN expression or stimulation of mitochondrial protein synthesis specifically increases slow myosin heavy chain expression. In conclusion, these data clearly suggest that, partly via Calcineurin expression, mitochondrial protein synthesis is involved in muscle development through the control of myoblast differentiation and probably the acquisition of the contractile and metabolic phenotype of muscle fibres.  相似文献   

9.
  • 1.1. The effect of functional overload produced by tenotomy of synergistic gastrocnemius muscle on the expression of myosin heavy chain (MHC) isoforms in the plantaris and soleus muscles of the rat was studied using gradient sodium dodecyl sulfate-acrylamide gel electrophoresis.
  • 2.2. Five weeks tenotomy, the plantaris and soleus muscle weights induced by tenotomy of the gastrocnemius muscle were 44.3% (P < 0.005) and 37.4% (P < 0.005), respectively, heavier than the contralateral control muscles.
  • 3.3. Although four types of MHC isoforms were observed in both control and experimental plantaris, the percentage of MHC isoforms in the control and experimental muscles differed; the hypertrophied plantaris muscle contained more HCI (P < 0.05), HCIIa and HCIId (P < 0.05) and less HCIIb (P < 0.05) than the control muscle.
  • 4.4. The control soleus muscle contained two MHC isofonns, HCI and HCIIa. However, there was only a single HCI isoform in the hypertrophied soleus muscle.
  • 5.5. These results indicate that overloading a skeletal muscle by removing its synergists produces not only the muscle hypertrophy but also the changes in the expression of MHC isofonns.
  相似文献   

10.
This study investigates effects of chronic low frequency stimulation (CLFS) on myosin heavy (MHC) and light chain (MLC) expression in fast-twitch muscles in hypothyroid, euthyroid, and hyperthyroid rats. The changes at both the mRNA and protein level indicated antagonistic effects of thyroid hormone and CLFS: under euthyroid conditions, CLFS mainly elicited a MHCIIb----MCHIId----MHCIIa transition. Whereas CLFS did not induce the slow MHCI in the euthyroid state, this isoform was present in the hypothyroid state and was further enhanced with CLFS indicating the suppressive effect of thyroid hormone to be stronger than the inductive influence of CLFS. Hyperthyroidism alone suppressed the expression MHCIIa and enhanced a MHCIId to MHCIIb transition. This shift to the faster MHC isoforms was only partially counteracted by CLFS. Thus, it appeared that thyroid hormone had a graded suppressive effect on the expression of MHC isoforms in the order MHCIId less than MHCIIa less than MHCI. Elevated neuromuscular activity partially counteracted these hormone effects. Changes in MLC mRNAs were consistent with those in the MHC pattern, i.e. increases or decreases in MHCIIb led to corresponding changes in the expression of MLC3f. A similar relationship existed for the slow MHCI and the slow MLC isoforms.  相似文献   

11.
12.
Modulation of myosin assembly   总被引:1,自引:0,他引:1  
Myosin self-assembly is generally considered to be the major process in thick filament formation within striated muscles. The biological assembly of myosin into thick filaments is being analysed by genetic dissection as well as biochemical and morphological experiments in the nematode Caenorhabditis elegans. This work shows that the assembly of myosin is modulated by its biosynthesis and interaction with non-myosin proteins. Assemblages which generate multiple nascent thick filaments may play a central role in a catalytic cycle of myosin assembly.  相似文献   

13.
Smooth muscle cells express isoforms of actin and myosin heavy chains (MHC). In early postnatal animals the nonmuscle (NM) actin and MHC isoforms in vascular (aorta) smooth muscle were present in relatively high percentages. More than 30% of the MHC and 40% of the actin isoforms were NM. The relative percentage of the NM isoforms decreased significantly as the animals reached maturity, with NM MHC less than 10% and NM actin less than 30% of the totals. Concurrent with this decrease in NM isoforms was an increase in the smooth muscle (SM) isoforms. The relative changes and time frame in which these changes occurred were very similar for the actin and MHC isoforms. In arterial tissue there were species differences for changes with development in the two SM MHC isoforms (SM1 and SM2). The ratio of SM1:SM2 in young rat aorta was approximately 0.5, while this same ratio was approximately 3 in young swine carotid. Both adult rats and swine had a SM1:SM2 MHC ratio of approximately 1.2. Rat bladder smooth muscle showed no significant change in NM vs SM ratio between young and old rats, while the SM1:SM2 ratio decreased from 2.7 to 1.7 between these age groups. The shifts in alpha and beta actin were similar to those in the vascular tissue, but of much smaller magnitude.  相似文献   

14.
Repetitive transcranial magnetic stimulation (rTMS) is a new tool for the treatment of neuropsychiatric disorders. However, the mechanisms underlying the effects of rTMS are still unclear. In this study, we analyzed mRNA expression changes of monoamine transporter (MAT) genes, which are targets for antidepressants and psychostimulants. Following a 20-day rTMS treatment, these genes were found to be differentially expressed in the mouse brain. Down-regulation of serotonin transporter (SERT) mRNA levels and the subsequent decrease in serotonin uptake and binding were observed after chronic rTMS. In contrast to the SERT changes, increased mRNA levels of dopamine transporter (DAT) and norepinephrine transporter (NET) were observed. For NET, but not DAT, there were accompanying changes in uptake and binding. Similar effect on NET was observed in PC12 cells stimulated by rTMS for 15 days. These results indicate that modulation of MATs by chronic rTMS may be one therapeutic mechanism for the treatment of neuropsychiatric disorders.  相似文献   

15.
We tested the hypothesis that maternal glucocorticoid treatment modulates 17-kDa myosin light chain (myosin LC17) isoform expression and contractile dynamics in fetal ovine carotid arteries. In the single course group, ewes received 6 mg dexamethasone or placebo over 48 h. In the repeated course group, ewes received 6 mg dexamethasone or placebo weekly for 5 wk. In response to 1 microM phenylephrine, arteries from fetuses of dexamethasone-treated ewes exhibited biphasic contractions, characterized by an intermediate relaxation phase. The relaxation rate constant was significantly higher in arteries from the fetuses of dexamethasone than placebo-treated ewes. The observed biphasic contractions suggest the appearance of functional sarcoplasmic reticulum in the arteries from the fetuses of dexamethasone-treated ewes. The myosin LC17(a) isoform expression was lower in the arteries from the fetuses of the placebo-treated ewes than in those from the ewes. Repeated maternal administration of dexamethasone induced an almost twofold increase in myosin LC17(a) isoform expression in the fetal arteries. In contrast, maternal myosin LC17a isoform expression was not affected by dexamethasone treatment. We speculate that dexamethasone-induced increases in fetal myosin LC17(a) isoform expression represent accelerated differentiation of a subpopulation of vascular smooth muscle cells from the fetal to adult phenotype.  相似文献   

16.
17.
The patterns of myosin heavy chain (MyHC) isoform expression in the embryo and in the adult mouse are reasonably well characterized and quite distinct. However, little is known about the transition between these two states, which involves major decreases and increases in the expression of several MyHC genes. In the present study, the expression of seven sarcomeric MyHCs was analyzed in the hindlimb muscles of wild-type mice and in mice null for the MyHC IIb or IId/x genes at several time points from 1 day of postnatal life (dpn) to 20 dpn. In early postnatal life, the developmental isoforms (embryonic and perinatal) comprise >90% of the total MyHC expression, while three adult fast isoforms (IIa, IIb, and IId) comprise <1% of the total MyHC protein. However, between 5 and 20 dpn their expression increases to comprise >90% of the total MyHC. Expression of each of the three adult fast isoforms occurs in a spatially and temporally distinct manner. We also show that alpha MyHC, which is almost exclusively expressed in the heart, is expressed in scattered fibers in all hindlimb muscles during postnatal development. Surprisingly, the timing and localization of expression of the MyHC isoforms is unchanged in IIb and IId/x null mice, although the magnitude of expression is altered for some isoforms. Together these data provide a comprehensive overview of the postnatal expression pattern of the sarcomeric MyHC isoforms in the mouse hindlimb.  相似文献   

18.
19.
Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.  相似文献   

20.
This study examined correlations between type I percent myosin heavy chain isoform content (%MHC) and mechanomyographic amplitude (MMGRMS) during isometric muscle actions. Fifteen (age = 21.63 ± 2.39) participants performed 40% and 70% maximal voluntary contractions (MVC) of the leg extensors that included increasing, steady force, and decreasing segments. Muscle biopsies were collected and MMG was recorded from the vastus lateralis. Linear regressions were fit to the natural-log transformed MMGRMS–force relationships (increasing and decreasing segments) and MMGRMS was selected at the targeted force level during the steady force segment. Correlations were calculated among type I%MHC and the b (slopes) terms from the MMGRMS–force relationships and MMGRMS at the targeted force. For the 40% MVC, correlations were significant (P < 0.02) between type I%MHC and the b terms from the increasing (r = −0.804) and decreasing (r = −0.568) segments, and MMGRMS from the steady force segment (r = −0.606). Type I%MHC was only correlated with MMGRMS during the steady force segment (P = 0.044, r = −0.525) during the 70% MVC. Higher type I%MHC reduced acceleration in MMGRMS (b terms) during the 40% MVC and the amplitude during the steady force segments. The surface MMG signal recorded during a moderate intensity contraction provided insight on the contractile properties of the VL in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号