首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In the beginning: the initiation of meiosis   总被引:1,自引:0,他引:1  
The most-critical point of reproductive development in all sexually reproducing species is the transition from mitotic to meiotic cell cycle. Studies in unicellular fungi have indicated that the decision to enter meiosis must be made before the beginning of the premeiotic S phase. Recent data from the mouse suggest that this timing of meiosis initiation is a universal feature shared also by multicellular eukaryotes. In contrast, the signaling cascade that leads to meiosis initiation shows great diversity among species.  相似文献   

3.
Bacteriophage T7 DNA primase (gene-4 protein, 66,000 daltons) enables T7 DNA polymerase to initiate the synthesis of DNA chains on single-stranded templates. An initial step in the process of chain initiation is the formation of an oligoribonucleotide primer by T7 primase. The enzyme, in the presence of natural SS DNA, Mg++ (or Mn++), ATP and CTP (or a mixture of all 4 rNTPs), catalyzes the synthesis of di-, tri-, and tetraribonucleotides all starting at the 5' terminus with pppA. In a subsequent step requiring both T7 DNA polymerase and primase, the short oligoribonucleotides (predominantly pppA-C-C-AOH) are extended by covalent addition of deoxyribonucleotides. With the aid of primase, T7 DNA polymerase can also utilize efficiently a variety of synthetic tri-, tetra-, or pentanucleotides as chain initiators. T7 primase apparently plays an active role in primer extension by stabilizing the short primer segments in a duplex state on the template DNA.  相似文献   

4.
The replication of the genomic RNA of the hepatitis C virus (HCV) of positive polarity involves the synthesis of a replication intermediate of negative polarity by the viral RNA-dependent RNA polymerase (NS5B). In vitro and likely in vivo, the NS5B initiates RNA synthesis without primers. This de novo mechanism needs specific interactions between the polymerase and viral RNA elements. Cis-acting elements involved in the initiation of (–) RNA synthesis have been identified in the 3′ non-coding region and in the NS5B coding region of the HCV RNA. However, the detailed contribution of sequences and/or structures of (–) RNA involved in the initiation of (+) RNA synthesis has been less studied. In this report, we identified an RNA element localized between nucleotides 177 and 222 from the 3′-end of the (–) RNA that is necessary for efficient initiation of RNA synthesis by the recombinant NS5B. By site-directed mutagenesis experiments, we demonstrate that the structure rather than the primary sequence of this domain is important for RNA synthesis. We also demonstrate that the intact structure of this RNA element is also needed for efficient RNA synthesis when the viral NS5B functions in association with other viral and cellular proteins in cultured hepatic cells.  相似文献   

5.
6.
The replicase activity of rotavirus open cores has been used to study the synthesis of (-) strand RNA from viral (+) strand RNA in a cell-free replication system. The last 7 nt of the (+) strand RNA, 5'-UGUGACC-3', are highly conserved and are necessary for efficient (-) strand synthesis in vitro. Characterization of the cell-free replication system revealed that the addition of NaCl inhibited (-) strand synthesis. By preincubating open cores with (+) strand RNA and ATP, CTP, and GTP prior to the addition of NaCl and UTP, the salt-sensitive step was overcome. Thus, (-) strand initiation, but not elongation, was a salt-sensitive process in the cell-free system. Further analysis of the requirements for initiation showed that preincubating open cores and the (+) strand RNA with GTP or UTP, but not with ATP or CTP, allowed (-) strand synthesis to occur in the presence of NaCl. Mutagenesis suggested that in the presence of GTP, (-) strand synthesis initiated at the 3'-terminal C residue of the (+) strand template, whereas in the absence of GTP, an aberrant initiation event occurred at the third residue upstream from the 3' end of the (+) strand RNA. During preincubation with GTP, formation of the dinucleotides pGpG and ppGpG was detected; however, no such products were made during preincubation with ATP, CTP, or UTP. Replication assays showed that pGpG, but not GpG, pApG, or ApG, served as a specific primer for (-) strand synthesis and that the synthesis of pGpG may occur by a template-independent process. From these data, we conclude that initiation of rotavirus (-) strand synthesis involves the formation of a ternary complex consisting of the viral RNA-dependent RNA polymerase, viral (+) strand RNA, and possibly a 5'-phosphorylated dinucleotide, that is, pGpG or ppGpG.  相似文献   

7.
In genome of Drosophila melanogaster, various families of retrotransposons with different combination of functional domens and mechanisms of transposition are present. However only retrotransposons of gypsy family are retroviruses related to errantiviruses. Other families seemingly appeared as intermediate forms of retroviruses evolution. Despite the fact that the question on origin of retroviruses remains unclear, now the hypothesis of their origin from retrotransoposons can be considered the most consistent. Infectious properties of errantiviruses are linked to the presence of the third open reading frame (the env gene). Acquisition of the env gene conversed retrotransposons into retroviruses. So, origin of this gene is of special interest. Homologues of the env gene of errantiviruses are discovered in genomes of D. melanogaster, as well as in baculoviruses and in bacteria Wolbachia pipientis, the endosymbiont of Drosophila. It was shown that homologue of the env gene come to Wolbachia genome from Drosophila genome by horizontal transfer of the gypsy group retrotransposon. Thus, Wolbachia was not a donor of the env gene for errantiviruses. Seemingly, errantiviruses captured the baculoviral homologue of the env gene (f). However origin of the f gene is not clear. At the same time the env gene homologue in D. melanogaster genome exist (Iris). It must not be ruled out that the Iris gene was the source of the env gene of errantiviruses and baculoviruses.  相似文献   

8.
We have developed an HIV nef-Escherichia coli lacZ fusion system in vitro that allows the detection of low frequency mutations, including frameshifts, deletions and insertions. A portion of the nef gene that encompasses a hypervariable region was fused in-frame with a downstream lacZalpha peptide coding region. The resulting lacZalpha peptide fusion protein remained functional. Any frameshift mutations in the nef insert would put the downstream lacZ alpha peptide gene out of frame, eliminating alpha complementation. With this system we compared the error rates of frameshift mutations that arise during DNA-directed and RNA-directed DNA synthesis. Results showed that DNA-directed and RNA-directed DNA synthesis did not contribute equally to the generation of mutations. DNA-directed DNA synthesis generated frameshift mutations at a frequency approximately 10-fold higher than those arising from RNA-directed DNA synthesis. RNA-directed DNA synthesis in the presence of acceptor templates showed an increase in mutation rate and differences in the mutation spectrum. The enhancement of mutation rate was caused by the appearance of mutations at three new locations that correlated with likely recombination sites. Results indicate that recombination is another source of mutations during viral replication.  相似文献   

9.
Full classification of Drosophila melanogaster retrotransposons with long terminal repeats (LTR-retrotransposons) has been recomposed, and their evolutional analysis in sequenced genomes of different species of drosophila and other arthropods has been carried out. D. melanogaster LTR-retrotransposons are divided into three groups: gypsy (one, two, or three open reading frames (ORFs)), copia (one ORF), and BEL (one ORF). The gypsy group is divided into three subgroups. Subgroup I is underrepresented by retrotransposons-retroviruses with three ORFs and their derivatives, which have lost the env gene (ORF3). Subgroup II is underrepresented by retrotransposons with two ORFs, and subgroup III is underrepresented by retrotransposons with one ORF. A comparative analysis of homologs of gypsy group LTR-retrotransposons evidences that subgroups I and II are represented only in the genomes of Lepidoptera and Diptera. The gypsy group of LTR-retrotransposons with one and two ORFs is found in almost all genomes of arthropods. Most of the families of D. melanogaster gypsy group LTR-retrotransposons have close homologs in the genomes of other species of drosophila. A degree of identity of retrotransposons sequences is correlated with a degree of relation between species of drosophila, indicating vertical transmission of retrotransposons. Obvious cases of horizontal transfer of some mobile elements have been detected including retrotransposons without the env gene. Homologs of distinct ORFs of retrotransposons—genes gag and env—have been found. Gene-homolog of the gag gene—Grp (CG5680)—is under purifying selection, so it has an important function in drosophila genome.  相似文献   

10.
Human immunodeficiency virus type 1 minus strand transfer was measured using a genomic donor-acceptor template system in vitro. Donor RNA D199, having the minimum region required for minus strong stop DNA synthesis, was previously shown to transfer with 35% efficiency to an acceptor RNA representing the 3' repeat region. Donor D520, having an additional 321-nucleotide segment extending into gag, transferred at 75% efficiency. In this study each transfer step was analyzed to account for the difference. Measurement of terminal transfer indicated that the 3' terminus of the cDNA generated using D520 is more accessible for transfer than that of D199. Nevertheless, acceptor competition experiments demonstrated that D520 has a greater preference for invasion-driven versus terminal transfer than D199. Competition mapping showed that the base of the transactivation response element is the primary invasion site for D520, important for efficient acceptor invasion. Acceptors complementary to the invasion and terminal transfer sites, but not the region between, allowed assessment of the significance of hybrid propagation by branch migration. These bipartite acceptors showed that with D520, invasion raises the local concentration of the acceptor for efficient terminal transfer by a proximity effect. However, with D199, invasion is relatively inefficient, and the cDNA 3' terminus is not very accessible. For most transfers that occurred, the acceptor accessed the cDNA 3' end by branch migration. Results suggest that both proximity and branch migration mechanisms contribute to transfers, with the proportion determined by donor-cDNA structure. D520 transfers better because it has greater accessibility for both invasion and terminus transfer.  相似文献   

11.
12.
Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos have been evaluated with regard to the overall activity of pol gamma and in partial reactions involving template-primer binding and initiation and idling in DNA strand synthesis. Both the 5' --> 3' DNA polymerase and 3' --> 5' exonuclease in pol gamma are stimulated 15-20-fold on oligonucleotide-primed single-stranded DNA by native and recombinant forms of mtSSB. That the extent of stimulation is similar for both enzyme activities over a broad range of KCl concentrations suggests their functional coordination and a similar mechanism of stimulation by mtSSB. At the same time, the high mispair specificity of pol gamma in exonucleolytic hydrolysis is maintained, indicating that enhancement of pol gamma catalytic efficiency is likely not accompanied by increased nucleotide turnover. DNase I footprinting of pol gamma.DNA complexes and initial rate measurements show that mtSSB enhances primer recognition and binding and stimulates 30-fold the rate of initiation of DNA strands. Dissociation studies show that productive complexes of the native pol gamma heterodimer with template-primer DNA are formed and remain stable in the absence of replication accessory proteins.  相似文献   

13.
14.
T W Wong  D A Clayton 《Cell》1985,42(3):951-958
Synthesis of human light-strand mitochondrial DNA was accomplished in vitro using DNA primase, DNA polymerase, and other accessory proteins isolated from human mitochondria. Replication begins with the synthesis of primer RNA on a T-rich sequence in the origin stem-loop structure of the template DNA and absolutely requires ATP. A transition from RNA synthesis to DNA synthesis occurs near the base of the stem-loop structure and a potential recognition site for signaling that transition has been identified. The start sites of the in vitro products were mapped at the nucleotide level and were found to be in excellent agreement with those of in vivo nascent light-strand DNA. Isolated human mitochondrial enzymes recognize and utilize the bovine, but not the mouse, origin of light-strand replication.  相似文献   

15.
16.
Abstract Derivatives of Bacillus subtilis plasmid pUB110 lacking the major lagging strand replication origin ( sso U) accumulate intracellular single-strand circular (SS(c)) DNA intermediates and are unable to propagate in dna B and dna D hosts. DnaA-dependent priming requires a DnaA box in a stable hairpin form; a higher copy number of a DnaA box is not sufficient as a signal for the conversion of the SS(c) into its dsDNA form. The introduction into the plasmid of a hairpin structure, whose stem carries a DnaA box, mediates conversion of SS(c) into dsDNA and makes plasmid replication independent of the B. subtilis dna B function. This conversion signal has been termed sso A.  相似文献   

17.
We have characterized a soluble enzyme system from adenovirus-infected cells that is capable of replicating exogenously added adenovirus DNA in vitro. Maximal DNA synthesis is observed when DNA-protein complex, isolated from purified adenovirus virions, is added as template. Under these conditions DNA replication starts at or near either end of the template. Daughter strand synthesis then proceeds in the 5′ to 3′ direction displacing the parental strand of the same polarity. Thus, the r daughter strand is synthesized from right to left on the conventional map of the adenovirus genome, and the l daughter strand is synthesized from left to right. This course of events is the same as that which occurs during adenovirus DNA replication in vivo. In contrast, when deproteinized adenovirus DNA is added to the in vitro system, the limited DNA synthesis that is observed appears to be due to a repair-like reaction. In particular, synthesis can begin at many sites within the template, and the synthetic product consists largely of short DNA chains that are covalently linked to template DNA strands.  相似文献   

18.
19.
R Kruklitis  D J Welty    H Nakai 《The EMBO journal》1996,15(4):935-944
During transposition bacteriophage Mu transposase (MuA) catalyzes the transfer of a DNA strand at each Mu end to target DNA and then remains tightly bound to the Mu ends. Initiation of Mu DNA replication on the resulting strand transfer complex (STC1) requires specific host replication proteins and host factors from two partially purified enzyme fractions designated Mu replication factors alpha and beta (MRFalpha and beta). Escherichia coli ClpX protein, a molecular chaperone, is a component required for MRFalpha activity, which removes MuA from DNA for the establishment of a Mu replication fork. ClpX protein alters the conformation of DNA-bound MuA and converts STC1 to a less stable form (STC2). One or more additional components of MRFalpha (MRFalpha2) displace MuA from STC2 to form a nucleoprotein complex (STC3), that requires the specific replication proteins and MRFbeta for Mu DNA synthesis. MuA present in STC2 is essential for its conversion to STC3. If MuA is removed from STC2, Mu DNA synthesis no longer requires MRFalpha2, MRFbeta and the specific replication proteins. These results indicate that ClpX protein activates MuA in STC1 so that it can recruit crucial host factors needed to initiate Mu DNA synthesis by specific replication enzymes.  相似文献   

20.
A turnip yellow mosaic virus RNA-dependent RNA polymerase activity was used to study the template requirements for in vitro minus strand synthesis, which is initiated specifically opposite the 3'-CCA that terminates the 3'-tRNA-like structure. A deletion survey confirmed earlier results suggesting the absence of minus strand promoter elements upstream of the pseudoknotted acceptor stem and 3'-terminus. Reiteration of this 27-nt domain provided two competing initiation sites. By varying the added downstream element, it was shown that the pseudoknotted domain could be functionally replaced by various simple stem/loops, although with some decrease in activity. The addition of varying numbers of consecutive -CCA- triplets to the 3' end of the tRNA-like structure resulted in accurate initiation from each added triplet. A similar spectrum of initiations occurred with an unstructured RNA consisting of 12 consecutive -CCA- triplets and no additional viral sequence. Substitution mutations revealed no influence on minus strand synthesis of the identity of the nucleotide immediately upstream of a -CC- initiation site, but a preference for a purine immediately downstream. The introduction of secondary structure into the linear template showed that the usage of potential -CCR- initiation sites is influenced by nonspecific secondary structure. We conclude that specificity arises from the requirement that a -CCR- sequence be sterically accessible. This mechanism is only applicable to interactions that do not involve RNA unwinding during site selection, but may be used commonly in positive strand RNA virus replication and be applicable to other RNA-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号