首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetically induced increase in the number of 18S + 28S ribosomal genes known as magnification has been reported to occur in male Drosophila but has not previously been observed in females. We now report that bobbed magnified (bbm) is recovered in progeny of female Drosophila carrying three different X bobbed (Xbb) chromosomes and the helper XYbb chromosome, which is a derivative of the Ybb- chromosome. Using different combinations of bb or bb+ X and Y chromosomes, we show that magnification in females requires both a deficiency in ribosomal genes and the presence of a Y chromosome: X/X females that are rDNA-deficient but do not carry a Y chromosome do not produce bbm; similarly, X/X/Y females that carry a Y chromosome but are not rDNA-deficient do not produce bbm. Bobbed magnified is only recovered from rDNA-deficient X/XY, X/X/Y or XX/Y females. We have also found that females carrying a ring Xbb chromosome together with the XYbb- chromosome do not produce bbm, indicating that ring X chromosomes are inhibited to magnify in females as in males. We postulate that the requirement for a Y chromosome is due to sequences on the Y chromosome that regulate or encode factor(s) required for magnification, or alternatively, affect pairing of the ribosomal genes.--These studies demonstrate that magnification is not limited to males but also occurs in females. Magnification in females is induced by rDNA-deficient conditions and the presence of a Y chromosome, and probably occurs by a mechanism similar to that in males.  相似文献   

2.
Aneuploids cannot be stably preserved by sexual propagation, though they can maintain their genetic identity by asexual propagation. However, it is possible for somaclonal variation to occur during asexual propagation. Surveys taken from 2005 to 2007 showed that there were 26 lines with morphological variations from a total of 114 asexually propagated rice lines. Among these, 12 lines were detected that had either increased or decreased chromosome numbers, while the other 14 lines did not show any changes in chromosome number. Lines with increased chromosome numbers include the following four classes: (1) an extra chromosome was retained, and another normal individual chromosome was increased; (2) an extra chromosome was increased, and the normal chromosome numbers did not change; (3) an extra chromosome was lost, and another chromosome was increased; and (4) the genome was doubled. We studied 543 somatic cells from the 12 lines during mitosis and observed abnormal mitotic behaviors such as chromosome lagging, uneven distribution, and chromosome breakage at anaphase. These results show that abnormal mitotic behavior led to the somaclonal variation in chromosome number. However, cytological variation can only explain a minority of the asexual separated lines.  相似文献   

3.
M. Goldway  T. Arbel    G. Simchen 《Genetics》1993,133(2):149-158
A yeast strain, in which nondisjunction of chromosome III at the first-meiotic division could be assayed, was constructed. Using chromosome fragmentation plasmids, chromosomal fragments (CFs) were derived in isogenic strains from six sites along chromosome III and one site on chromosome VII. Whereas the presence of the CFs derived from chromosome III increased considerably the meiosis I nondisjunction of that chromosome, the CF derived from chromosome VII had no effect on chromosome III segregation. The effects of the chromosome III-derived fragments were not linearly related to fragment length. Two regions, one of 12 kb in size located at the left end of the chromosome, and the other of 5 kb, located at the center of the right arm, were found to have profound effects on chromosome III nondisjunction. Most disomics arising from meioses in strains containing chromosome III CFs did not contain the CF; thus it appears that the two chromosome III homologs had segregated away from the CF. Among the disomics, recombination between the homologous chromosomes III was lower than expected from the genetic distance, while recombination between one of the chromosomes III and the fragment was frequent. We suggest that there are sites along the chromosome that are more involved than others in the pairing of homologous chromosomes and that the pairing between fragment and homologs involves recombination among these latter elements.  相似文献   

4.
An in situ study of variant telomeric repeats in human chromosomes.   总被引:3,自引:0,他引:3  
K Krejcí  J Koch 《Genomics》1999,58(2):202-206
Variant telomeric repeats are selectively detected in human telomeres in situ by the novel approach of dideoxy-PRINS, displaying their organization in a format where all the individual chromosome ends can be viewed individually and simultaneously. All human chromosome ends are found to contain variant repeats, though not all types of repeats can be detected on all chromosome ends. Although the staining frequency at particular chromosome ends seems polymorphic among individuals, some chromosome ends are more commonly stained with a given probe than others. A few chromosome ends also appear with particularly strong signals. With a probe for one type of variant repeat ((AGGGTG)n), peculiar patterns with more than two signals per chromosome end are observed.  相似文献   

5.
An awned rice(Oryza sativa) plant carrying a tiny extra chromosome was discovered among the progeny of a telotrisomic line 2nt4L. Fluorescence in situ hybridization(FISH) using chromosome specific BAC clones revealed that this extra chromosome was a ring chromosome derived from part of the long arm of chromosome 4. So the aneuploidy plant was accordingly named as 2nt4L ring. We did not detect any Cent O FISH signals on the ring chromosome, and found only the centromeric probe Centromeric Retrotransposon of Rice(CRR) was co-localized with the centromere-specific histone CENH3 as revealed by sequential FISH after immunodetection. The extra ring chromosome exhibited a unique segregation pattern during meiosis, including no pairing between the ring chromosome and normal chromosome 4during prophase I and pre-separation of sister chromatids at anaphase I.  相似文献   

6.
The results of chromosome studies on 6809 consecutive newborn infants are presented. One hundred and one (1.48%) were heterozygous for a marker chromosome, the significance of which is not at present clear. Twenty-two infants (0.32%) had a major chromosome abnormality. Only six of these infants (0.09%) had a clinically recognizable abnormal phenotype (Down''s syndrome). The occult chromosome abnormalities included five sex chromosome abnormalities (one 47,XYY; two 47,XXY; two 47,XXX) and 11 balanced translocations. Seven of these were t(DqDq) and four were reciprocal translocations. The results of the present survey are combined with four other similar neonatal surveys in which a total of 23,328 newborns have been screened. Of these, 117 (0.5%; range 0.65-0.32%) had major chromosome abnormalities. The majority of these (72.7%) would not have been detected at birth without chromosome studies, an important fact in the context of prenatal diagnosis of chromosome disease and the early ascertainment of high-risk families.  相似文献   

7.
BrdU处理的鱼类染色体高分辨G-带带型分析   总被引:12,自引:6,他引:6  
本文应用鱼类染色体高分辨G-带技术,重点将黄鳝培养细胞具不同长度染色体的正中期分裂相做成G-带核型加以比较分析。随着染色体长度的增加,带纹数目也增加。但增加是有限度的。染色体带纹数目的增加,明显地表现在深染带再分为若干亚带。当染色体从前期向中、后期过渡收缩变短时,一些亚带融合为原来数目的带。染色体上各个带的收缩程度、收缩时间是不均等的。实验证明大剂量的BrdU不仅能阻断鱼类细胞于中S期,也可使染色体伸长、小剂量的伸长作用不明显。最后讨论了BrdU处理与G-显带的关系、染色体带纹数目相对恒定以及染色体伸长缩短问题。  相似文献   

8.
Summary Conventional and molecular cytogenetic analyses of three murine cancer cell lines that had been induced in male athymic mice by the injection of three different human prostate cancer cell lines revealed selective amplification of the Y chromosome. In particular, analysis of metaphase and interphase nuclei by fluorescence in situ hybridization (FISH) with the mouse Y chromosome-specific DNA painting probe revealed the presence of various numbers of Y chromosomes, ranging from one to eight, with a large majority of nuclei showing two copies (46.5–60.1%). In Interphase nuclei, the Y chromosomes showed distinct morphology, allowing identification irrespective of whether the preparations were treated for 15 min or for 5 h with Colcemid, a chemical known to cause chromosome condensation. However, FISH performed on human lymphocyte cultures with chromosome-specific DNA painting probes other than the Y chromosome did not reveal condensed chromosome morphology in interphase nuclei even after 12 h of Colcemid treatment. Our FISH results indicate that (1) the Y chromosome is selectively amplified in all three cell lines; (2) the mouse Y chromosome number is comparable in both interphase and metaphase cells; (3) the Y chromosome number varies between one and eight, with a large majority of cells showing two or three copies in most interphase nuclei; (4) the condensation of the Y chromosome is not affected by the duration of Colcemid treatment but by its inherent DNA constitution; and (5) the number of copies of the Y chromosome is increased and retained not only in human prostate tumor cell lines but also in murine tumors induced by these prostate tumor cell lines.  相似文献   

9.
Spermatogenesis in XO,Sxr mice: role of the Y chromosome   总被引:2,自引:0,他引:2  
The goal of this investigation was to evaluate the role of the Y chromosome in spermatogenesis by a quantitative and qualitative analysis of spermatogenesis as it occurs in the absence of a significant portion of the Y chromosome, i.e., in XO,Sxr male mice. Although these mice have the testis-determining portion of the Y chromosome on their single X chromosome, they lack most of the Y chromosome. Since it was found that all sperm-specific structures were assembled in a normal spatial and temporal pattern in spermatids of XO,Sxr mice, the genes controlling these structures cannot be located on the Y chromosome outside of the Sxr region, and are more likely to be on autosomes or on the X chromosome. In spite of the assembly of the correct sperm-specific structures, spermatogenesis was not quantitatively normal in XO,Sxr mice and significantly reduced numbers of spermatids were found in the seminiferous tubules of these mice. Furthermore, two size classes of spermatids were found in the testes of XO,Sxr mice, normal and twice-normal size. These findings are suggestive of abnormalities of meiosis in XO,Sxr spermatocytes, which lack one of the two sex chromosomes, and may not implicate function of specific genes on the Y chromosome. Morphological abnormalities of spermatids, which were not unique to XO,Sxr mice, were observed and these may be due to either a defective testicular environment because of reduced numbers of germ cells or to the lack of critical Y chromosome-encoded products. Since pachytene spermatocytes of XO,Sxr mice exhibited a sex vesicle, it can be concluded that the assembly of this structure does not depend on the presence of either a complete Y chromosome or the pairing partner for the X chromosome.  相似文献   

10.
Previous studies of follicular thyroid tumors have shown loss of heterozygosity (LOH) on the short arm of chromosome 3 in carcinomas, and on chromosome 10 in atypical adenomas and carcinomas, but not in common adenomas. We studied LOH on these chromosomal arms in 15 follicular thyroid carcinomas, 19 atypical follicular adenomas and 6 anaplastic (undifferentiated) carcinomas. Deletion mapping of chromosome 10 using 15 polymorphic markers showed that 15 (37.5%) of the tumors displayed LOH somewhere along the long arm. Thirteen of these tumors showed deletions involving the telomeric part of chromosome 10q, distal to D1OS 187. LOH on chromosome 3p was found in 8 (20%) cases. Seven of these also showed LOH on chromosome 10q. In eight cases LOH was seen on chromosome 10q but not 3p. In comparison, the retinoblastoma gene locus at chromosome 13q showed LOH in 22% of the tumors. Most of these also had deletions on chromosome 10q. The results indicate that a region at the telomeric part of 10q may be involved in progression of follicular thyroid tumors.  相似文献   

11.
12.
Strains monosomic for chromosome I of Saccharomyces cerevisiae contain 25 to 35% fewer rRNA genes than do normal diploid strains. When these strains are repeatedly subcultured, colonies are isolated that have magnified their number of rRNA genes to the diploid amount while remaining monosomic for chromosome I. We have determined the amount of DNA complementary to rRNA in viable haploid spores derived from a magnified monosomic strain. Some of these haploids contained 24 to 48% more rRNA genes than a normal euploid strain. These extra genes may be responsible for the increased number of rRNA genes in the strain monosomic for chromosome I. Genetic analysis of the haploids containing extra rRNA genes suggested that these genes are linked to chromosomal DNA and are heterozygous. They were not closely linked to any centromere and were not located on chromosome I. Furthermore, all the DNA complementary to rRNA in one of these haploid strains with magnified rRNA genes sedimented at a chromosomal molecular weight, consistent with chromosomal linkage. In addition, several new mutations mapping on chromosome I were used to show that ribosomal DNA magnification was not due to a chromosome I duplication.  相似文献   

13.
Supernumerary chromosomes, termed "conditionally dispensable" (CD) chromosomes, are known in Nectria haematococca. Because these CD chromosomes had been revealed solely by pulsed-field gel electrophoresis, their morphological properties were unknown. In this study, we visualized a 1.6-Mb CD chromosome of this fungus by three different types of fluorescence in situ hybridization. The CD chromosome at mitotic metaphase was similar in its appearance to the other chromosomes in the genome. Heterochromatic condensation was not distinct in the CD chromosome, suggesting that it is primarily euchromatic. It was also evident that the CD chromosome is unique and not a duplicate of other chromosomes in the genome. At interphase and prophase, the CD chromosome was not dispersed throughout the nucleus, but occupied a limited domain. Occasionally, occurrence of two distinct unattached copies of the CD chromosome were observed during interphase and metaphase.  相似文献   

14.
We have developed a cytogenetic technique that allows observation of chromosome rearrangements associated with TK-/- mutagenesis of the L5178Y/TK+/-3.7.2C cell line early in mutant clonal history. For a series of mutagenic treatments we show that the major proportion (93%) of small-colony (sigma) mutants studied have chromosome 11 rearrangements (the chromosome containing the thymidine kinase gene) while large-colony (lambda) mutants do not have detectable chromosome rearrangements. In addition, we find among the chromosome abnormalities in sigma mutants a significant proportion (34%) with dicentric chromosomes involving chromosome 11. These potentially unstable chromosome rearrangements may help to explain the karyotypic instability and heterogeneity among chromosome 11 aberrations previously noted in sigma mutants when they are analyzed later in their clonal history.  相似文献   

15.
Summary We have analysed two duplications of the X chromosome in male patients using chromosome replication and DNA methylation patterns as determinants of the functional status of the duplicated segments. In both cases, the large duplicated regions, Xq12-q22 and Xq26.3-qter, were not inactivated. A review of previously reported male cases revealed that these duplications were also not subject to inactivation. Taken together, the examined duplications cover almost the entire X chromosome except the pericentromeric region and Xq25–26. Thus, most regions of the X chromosome can be present in two functional copies without lethal consequences.  相似文献   

16.
V. Guacci  D. B. Kaback 《Genetics》1991,127(3):475-488
Distributive disjunction is defined as the first division meiotic segregation of either nonhomologous chromosomes that lack homologs or homologous chromosomes that have not recombined. To determine if chromosomes from the yeast Saccharomyces cerevisiae were capable of distributive disjunction, we constructed a strain that was monosomic for both chromosome I and chromosome III and analyzed the meiotic segregation of the two monosomic chromosomes. In addition, we bisected chromosome I into two functional chromosome fragments, constructed strains that were monosomic for both chromosome fragments and examined meiotic segregation of the chromosome fragments in the monosomic strains. The two nonhomologous chromosomes or chromosome fragments appeared to segregate from each other in approximately 90% of the asci analyzed, indicating that yeast chromosomes were capable of distributive disjunction. We also examined the ability of a small nonhomologous centromere containing plasmid to participate in distributive disjunction with the two nonhomologous monosomic chromosomes. The plasmid appeared to efficiently participate with the two full length chromosomes suggesting that distributive disjunction in yeast is not dependent on chromosome size. Thus, distributive disjunction in S. cerevisiae appears to be different from Drosophila melanogaster where a different sized chromosome is excluded from distributive disjunction when two similar size nonhomologous chromosomes are present.  相似文献   

17.
Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes.  相似文献   

18.
While transformation is a prominent tool for genetic analysis and genome manipulation in many organisms, transforming DNA has often been found to be unstable relative to established molecules. We determined the potential for transformation-associated mutations in a 360 kb yeast chromosome III composed primarily of unique DNA. Wild-type and rad52 Saccharomyces cerevisiae strains were transformed with either a homologous chromosome III or a diverged chromosome III from S. carlsbergensis. The host strain chromosome III had a conditional centromere allowing it to be lost on galactose medium so that recessive mutations in the transformed chromosome could be identified. Following transformation of a RAD+ strain with the homologous chromosome, there were frequent changes in the incoming chromosome, including large deletions and mutations that do not lead to detectable changes in chromosome size. Based on results with the diverged chromosome, interchromosomal recombinational interactions were the source of many of the changes. Even though rad52 exhibits elevated mitotic mutation rates, the percentage of transformed diverged chromosomes incapable of substituting for the resident chromosome was not increased in rad52 compared to the wild-type strain, indicating that the mutator phenotype does not extend to transforming chromosomal DNA. Based on these results and our previous observation that the incidence of large mutations is reduced during the cloning of mammalian DNA into a rad52 as compared to a RAD+ strain, a rad52 host is well-suited for cloning DNA segments in which gene function must be maintained.  相似文献   

19.
Sex chromosomes of birds and mammals are highly differentiated and share several cytological features. However, comparative gene mapping reveals extensive conserved synteny between the chicken Z sex chromosome and human chromosome 9 but not the human X sex chromosome, implying an independent origin of avian and mammalian sex chromosomes. To better understand the evolution of the avian Z chromosome we analysed the synteny of chicken Z-linked genes in zebrafish, which is the best-mapped teleost genome so far. Existing zebrafish maps do not support the existence of an ancestral Z linkage group in the zebrafish genome, whereas mammalian X-linked genes show at least some degree of synteny conservation. This is consistent with in situ hybridisation mapping data in the freshwater pufferfish, Tetraodon nigroviridis where mammalian X-linked genes show a much higher degree of conserved synteny than human chromosome 9 or the avian Z chromosome. Collectively, these data argue in favour of a more recent evolution of the avian Z chromosome, compared with the mammalian X.  相似文献   

20.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号