首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
To investigate the mechanisms by which inositol phosphates regulate cytosolic free Ca2+ concentration ([Ca2+]c), we injected Xenopus oocytes with inositol phosphates and measured Ca2+-activated Cl- currents as an assay of [Ca2+]c. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) injection (0.1-10.0 pmol) induced an initial transient Cl- current (I1) followed by a second more prolonged Cl- current (I2). Both currents were Ca2+-dependent, but the source of Ca2+ was different. Release of intracellular Ca2+ stores produced I1, whereas influx of extracellular Ca2+ produced I2; Ca2+-free bathing media and inorganic calcium channel blockers (Mn2+, Co2+) did not alter I1 but completely and reversibly inhibited I2. Injection of the Ins(1,4,5)P3 metabolite, inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) (0.2-10.0 pmol) generated a Ca2+-dependent Cl- current with superimposed current oscillations that resulted from release of intracellular Ca2+, not Ca2+ influx. Injection of the Ins(1,3,4,5)P4 metabolite, inositol 1,3,4-trisphosphate (10.0 pmol), or the synthetic inositol trisphosphate isomer, inositol 2,4,5-trisphosphate (1.0-10.0 pmol), mimicked the effect of Ins(1,4,5)P3, stimulating an I1 resulting from release of intracellular Ca2+ and an I2 resulting from influx of extracellular Ca2+. The results indicate that several inositol trisphosphate isomers stimulate both release of intracellular Ca2+ and influx of extracellular Ca2+. Ins(1,3,4,5)P4 also stimulated release of intracellular Ca2+, but it was neither sufficient nor required for Ca2+ influx.  相似文献   

2.
In the phospholipase C signaling system, Ca(2+) is mobilized from intracellular stores by an action of inositol 1,4,5-trisphosphate. The depletion of intracellular calcium stores activates a calcium entry mechanism at the plasma membrane called capacitative calcium entry. The signal for activating the entry is unknown but likely involves either the generation or release, or both, from the endoplasmic reticulum of some diffusible signal. Recent research has focused on mammalian homologues of the Drosophila TRP protein as potential candidates for capacitative calcium entry channels. This review summarizes current knowledge about the nature of capacitative calcium entry signals, as well as the potential role of mammalian TRP proteins as capacitative calcium entry channel molecules.  相似文献   

3.
A soluble extract from human spermatozoa activates ascidian oocytes   总被引:1,自引:0,他引:1  
A soluble extract from human spermatozoa induced calcium oscillations and extrusion of the first polar body when injected into oocytes of the ascidian Ciona intestinalis . The properties of calcium oscillations and time of polar body extrusion precisely mimic oocyte activation induced by C. intestinalis sperm or sperm extracts. The data suggest that human sperm extracts can activate oocytes of different phyla by the same mechanism as homologous spermatozoa. Injection of inositol 1,4,5-trisphosphate (IP3) into C. intestinalis oocytes mimicked to some extent the initial stages of oocyte activation, but the results demonstrate that ascidian oocyte activation by human sperm extract cannot be explained solely in terms of IP3-induced calcium release. Injection of other calcium releasing second messengers, cyclic adenosine diphosphate ribose, or calcium ions, does not lead to oocyte activation or release intracellular calcium in ascidian oocytes. It was concluded that human spermatozoa contain one or more molecules that can trigger intracellular calcium release in oocytes from different phyla.  相似文献   

4.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

5.
Injection of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) into the animal pole of Xenopus oocytes induced membrane depolarization due to the internal mobilization of calcium, which activates a chloride conductance. Repetitive injections of Ins(1,4,5)P3 results in desensitization probably as a result of depletion of the internal store of calcium. Desensitization was restricted to the region surrounding the site of injection. Injection of Ins(1,4,5)P3 at one position induced desensitization, which failed to spread to a neighbouring region (ca. 200 microns away). Even when sufficient Ins(1,4,5)P3 was injected to induce calcium oscillations, there was still no evidence for the effects of Ins(1,4,5)P3 spreading to neighbouring regions. The fact that periodic calcium transients could also be established by the repetitive injection of small amounts of Ins(1,4,5)P3 suggests that calcium oscillations may also be localized. It is concluded that the Ins(1,4,5)P3-sensitive store of calcium comprises separate local compartments that can be activated independently of each other.  相似文献   

6.
We tested lysophosphatidic acid (LPA), known to induce inositol phosphate generation and calcium signals as well as rearrangements of the cytoskeleton and mitogenic responses in fibroblasts, for its ability to activate phospholipase C in an exocrine cell system, the salt-secreting cells from the avian nasal salt gland. LPA (>10 nmol/l) caused the generation of inositol phosphates from membrane-bound phosphatidylinositides. The resulting calcium signals resembled those generated upon activation of muscarinic receptors, the physiological stimulus triggering salt secretion in these cells. However, close examination of the LPA-mediated calcium signals revealed that the initial calcium spike induced by high concentrations of LPA (>10 μmol/l) may contain a component that is not dependent upon generation of inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) and may result from calcium influx from the extracellular medium induced by LPA in a direct manner. Low concentrations of LPA (<10 μmol/l), however, induce inositol phosphate generation, Ins(1,4,5)P3-mediated release of calcium from intracellular pools and calcium entry. These effects seem to be mediated by a specific plasma membrane receptor and a G protein transducing the signal to phospholipase C in a pertussis-toxin-insensitive manner. Signaling pathways of the muscarinic receptor and the putative LPA-receptor seem to merge at the G-protein level as indicated by the fact that carbachol and LPA trigger hydrolysis of the same pool of phosphatidylinositol (4,5)-bisphosphate (PIP2) and mobilize calcium from the same intracellular stores.  相似文献   

7.
Glucocorticoids are potent immunosuppressive agents that block upstream signaling events required for T cell receptor (TCR) activation. However, the mechanism by which glucocorticoids inhibit downstream responses, such as inositol 1,4,5-trisphosphate (IP3)-induced calcium signals, is not completely understood. Here we demonstrate that low concentrations of dexamethasone rapidly convert transient calcium elevations to oscillations after strong TCR stimulation. Dexamethasone converted the pattern of calcium signaling by inhibiting the Src family kinase Lck, which was shown to interact with and positively regulate Type I IP3 receptor. In addition, low concentrations of dexamethasone were sufficient to inhibit calcium oscillations and interleukin-2 mRNA after weak TCR stimulation. Together, these findings indicate that by inhibiting Lck and subsequently down-regulating IP3 receptors, glucocorticoids suppress immune responses by weakening the strength of the TCR signal.  相似文献   

8.
The depletion of an inositol 1, 4,5-trisphosphate-sensitive intracellular Ca2+ pool has been proposed to be the signal for Ca2+ entry in agonist-activated cells. Consistent with this idea, thapsigargin, which releases intracellular Ca2+ without inositol phosphate formation, has been reported to activate Ca2+ entry in certain cells. We now report the effects of thapsigargin on Ca2+ entry in parotid acinar cells. In fura-2-loaded parotid acinar cells, thapsigargin caused a sustained elevation of [Ca2+], but did not increase inositol phosphate formation. In the absence of extracellular Ca2+, the increase in [Ca2+], was transient, suggesting that thapsigargin activates both the release of Ca2+ from intracellular stores and the entry of Ca2+ from the extracellular space. In the absence of extracellular Ca2+, pretreatment with methacholine, an agonist believed to mobilize Ca2+ through the production of inositol 1,4,5-trisphosphate, inhibited but did not completely block the response to thapsigargin; likewise, pretreatment with thapsigargin inhibited the response to methacholine. In permeabilized cells, thapsigargin gradually released Ca2+, whereas inositol 1,4,5-trisphosphate caused a rapid and transient discharge of Ca2+. The simultaneous addition of thapsigargin with inositol 1,4,5-trisphosphate evoked a maximum Ca2+ release similar to that for inositol 1,4,5-trisphosphate alone, but the reuptake seen with inositol 1,4,5-trisphosphate alone was abolished. In intact cells, methacholine and thapsigargin together produced a greater initial release of Ca2+ than either alone, but they were not additive in the sustained phase of Ca2+ mobilization. These results demonstrate that the mechanisms for activation of Ca2+ entry by thapsigargin and methacholine are the same and are consistent with the idea that entry is initiated by the depletion of the intracellular inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. The results also indicate that, in contrast to previously proposed models, Ca2+ entry into agonist-activated cells occurs directly across the plasma membrane to the cytoplasm rather than through a cycle of uptake and release by the intracellular Ca2+ pool.  相似文献   

9.
To investigate the role of the src homology 2 (SH2)-containing inositol 5' phosphatase (SHIP) in growth factor-mediated signalling, we compared Steel factor (SF)-induced events in bone marrow-derived mast cells (BMMCs) from SHIP-/- and SHIP+/+ littermates. We found SF alone stimulated massive degranulation from SHIP-/- but none from SHIP+/+ BMMCs. This SF-induced degranulation, which was not due to higher c-kit levels in SHIP-/- cells, correlated with higher intracellular calcium than that in SHIP+/+ cells and was dependent on the influx of extracellular calcium. Both this influx and subsequent degranulation were completely inhibited by PI-3-kinase inhibitors, indicating that SF-induced activation of PI-3-kinase was upstream of extracellular calcium entry. A comparison of phosphatidylinositol-3,4,5-trisphosphate (PIP3) levels following SF stimulation of SHIP+/+ and SHIP-/- BMMCs suggested that SHIP restricted this entry by hydrolyzing PIP3. Although PI-3-kinase inhibitors blocked the release of intracellular calcium, implicating PIP3, and PLCgamma-2 was slightly more tyrosine phosphorylated in SHIP-/- cells, the increase in inositol-1,4,5-trisphosphate (IP3) and intracellular calcium levels were identical in SHIP-/- and SHIP+/+ BMMCs. These results suggest that SHIP prevents SF from triggering degranulation of normal BMMCs, and does so by hydrolyzing PIP3, which in turn limits extracellular calcium entry at a step after the release of intracellular calcium.  相似文献   

10.
Agonists that utilize the calcium-mobilizing second messenger inositol(1,4,5)trisphosphate Ins(1,4,5)P3 usually generate oscillations in intracellular calcium. Such oscillations, based on the periodic release of calcium from the endoplasmic reticulum, can also be induced by injecting cells with Ins(1,4,5)P3. The mechanism responsible for oscillatory activity was studied in Xenopus oocytes by injecting them with different inositol trisphosphates. The plasma membrane of Xenopus oocytes has calcium-dependent chloride channels that open in response to calcium, leading to membrane depolarization. Oscillations in calcium were thus monitored by recording membrane potential. The naturally occurring Ins(1,4,5)P3 produced a large initial transient followed by a single transient or a burst of oscillations. By contrast, two analogues (Ins(2,4,5)P3 and Ins(1,4,5)P(S)3) produced a different oscillatory pattern made up of a short burst of sharp transients. Ins(1,3,4,5)P4 had no effect when injected by itself, and it also failed to modify the oscillatory responses to either Ins(2,4,5)P3 or Ins(1,4,5)P(S)3. Both analogues failed to induce a response when injected immediately after the initial Ins(1,4,5)P3-induced response, indicating that they act on the same intracellular pool of calcium. The existence of different oscillatory patterns suggests that there may be different mechanisms for setting up calcium oscillations. The Ins(2,4,5)P3 and Ins(1,4,5)P(S)3 analogues may initiate oscillations through a negative feedback mechanism whereby calcium inhibits its own release. The two-pool model is the most likely mechanism to describe the Ins(1,4,5)P3-induced oscillations.  相似文献   

11.
Hormone-induced oscillations of the free intracellular calcium concentration are thought to be relevant for frequency encoding of hormone signals. In liver cells, such Ca2+ oscillations occur in response to stimulation by hormones acting via phosphoinositide breakdown. This observation may be explained by cooperative, positive feedback of Ca2+ on its own release from one inositol 1,4,5-trisphosphate-sensitive pool, obviating oscillations of inositol 1,4,5-trisphosphate. The kinetic rate laws of the associated model have a mathematical structure reminiscent of the Brusselator, a hypothetical chemical model involving a rather improbable trimolecular reaction step, thus giving a realistic biological interpretation to this hallmark of dissipative structures. We propose that calmodulin is involved in mediating this cooperativity and positive feedback, as suggested by the presented experiments. For one, hormone-induced calcium oscillations can be inhibited by the (nonphenothiazine) calmodulin antagonists calmidazolium or CGS 9343 B. Alternatively, in cells overstimulated by hormone, as characterized by a non-oscillatory elevated Ca2+ concentration, these antagonists could again restore sustained calcium oscillations. The experimental observations, including modulation of the oscillations by extracellular calcium, were in qualitative agreement with the predictions of our mathematical model.  相似文献   

12.
Cytosolic calcium oscillators   总被引:43,自引:0,他引:43  
M J Berridge  A Galione 《FASEB journal》1988,2(15):3074-3082
Many cells display oscillations in intracellular calcium resulting from the periodic release of calcium from intracellular reservoirs. Frequencies are varied, but most oscillations have periods ranging from 5 to 60 s. For any given cell, frequency can vary depending on external conditions, particularly the concentration of natural stimuli or calcium. This cytosolic calcium oscillator is particularly sensitive to those stimuli (neurotransmitters, hormones, growth factors) that hydrolyze phosphoinositides to give diacylglycerol and inositol 1,4,5-trisphosphate (Ins1,4,5P3). The ability of Ins1,4,5P3 to mobilize intracellular calcium is a significant feature of many of the proposed models that are used to explain oscillatory activity. Receptor-controlled oscillator models propose that there are complex feedback mechanisms that generate oscillations in the level of Ins1,4,5P3. Second messenger-controlled oscillator models demonstrate that the oscillator is a component of the calcium reservoir, which is induced to release calcium by a constant input of either Ins1,4,5P3 or calcium itself. In the latter case, the process of calcium-induced calcium release might be the basis of oscillatory activity in many cell types. The function of calcium oscillations is still unknown. Because oscillator frequency can vary with agonist concentration, calcium transients might be part of a frequency-encoded signaling system. When an external stimulus arrives at the cell surface the information is translated into a train of calcium spikes, i.e., the signal is digitized. Certain cells may then convey information by varying the frequency of this digital signal.  相似文献   

13.
Mounting evidence suggests that the ion pump, Na,K-ATPase, can, in the presence of ouabain, act as a signal transducer. A prominent binding motif linking the Na,K-ATPase to intracellular signaling effectors has, however, not yet been identified. Here we report that the N-terminal tail of the Na,K-ATPase catalytic alpha-subunit (alphaNT-t) binds directly to the N terminus of the inositol 1,4,5-trisphosphate receptor. Three amino acid residues, LKK, conserved in most species and most alpha-isoforms, are essential for the binding to occur. In wild-type cells, low concentrations of ouabain trigger low frequency calcium oscillations that activate NF-kappaB and protect from apoptosis. All of these effects are suppressed in cells overexpressing a peptide corresponding to alphaNT-t but not in cells overexpressing a peptide corresponding to alphaNT-t deltaLKK. Thus we have identified a well conserved Na,K-ATPase motif that binds to the inositol 1,4,5-trisphosphate receptor and can trigger an anti-apoptotic calcium signal.  相似文献   

14.
Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.  相似文献   

15.
Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.  相似文献   

16.
17.
Inositol 1,4,5-trisphosphate is an intracellular second messenger, produced upon stimulation of the phosphoinositide system, capable of mobilizing calcium from intracellular stores. We have recently identified high levels of specific binding sites for inositol 1,4,5-trisphosphate in brain membranes (Worley, P. F., Baraban, J. M., Colvin, J. S., and Snyder, S. H. (1987) Nature 325, 159-161) and have now further characterized these sites. In cerebellar membranes, inositol 1,4,5-trisphosphate binding sites are abundant (20 pmol/mg protein) and display high affinity and selectivity for inositol 1,4,5-trisphosphate (KD approximately equal to 40 nM), whereas other inositol phosphates such as inositol 1,3,4,5-tetrakisphosphate (Ki approximately equal to 10 microM) and inositol 1,4-bisphosphate (Ki approximately equal to 10 microM) exhibit much lower affinity for this site. Submicromolar concentrations of calcium strongly inhibit inositol 1,4,5-trisphosphate binding (IC50 approximately equal to 300 nM). A sharp increase in binding occurs at slightly alkaline pH. These results suggest that actions of inositol 1,4,5-trisphosphate are regulated by physiological alterations in intracellular pH and calcium concentrations.  相似文献   

18.
The Croonian lecture, 1988. Inositol lipids and calcium signalling   总被引:7,自引:0,他引:7  
The response of cells to many external stimuli requires a decoding process at the membrane to transduce information into intracellular messengers. A major decoding mechanism employed by a variety of hormones, neurotransmitters and growth factors depends on the hydrolysis of a unique inositol lipid to generate two key second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Here I examine the second messenger function of Ins(1,4,5)P3 in controlling the mobilization of calcium. We know most about how this messenger releases calcium from internal reservoirs but less is known concerning the entry of external calcium. One interesting possibility is that Ins(1,4,5)P3 might function in conjunction with its metabolic product Ins(1,3,4,5)P4 to control calcium entry through a mechanism employing a region of the endoplasmic reticulum as a halfway house during the transfer of calcium from outside the cell into the cytoplasm. The endoplasmic reticulum interposed between the plasma membrane and the cytosol may function as a capacitor to insure against the cell being flooded with external calcium. When stimulated, cells often display remarkably uniform oscillations in intracellular calcium. At least two oscillatory patterns have been recognized suggesting the existence of separate mechanisms both of which may depend upon Ins(1,4,5)P3. In one mechanism, oscillations may be driven by periodic pulses of Ins(1,4,5)P3 produced by receptors under negative feedback control of protein kinase C. The other oscillatory mechanism may depend upon Ins(1,4,5)P3 unmasking a process of calcium-induced calcium release from the endoplasmic reticulum. The function of these calcium oscillations is still unknown. This Ins(1,4,5)P3/calcium signalling system is put to many uses during the life history of a cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In permeabilized hepatocytes, inositol 1,4,5-trisphosphate, inositol 2,4,5-trisphosphate and inositol 4,5-bisphosphate induced rapid release of Ca2+ from an ATP-dependent, non-mitochondrial vesicular pool, probably endoplasmic reticulum. The order of potency was inositol 1,4,5-trisphosphate greater than inositol 2,4,5-trisphosphate greater than inositol 4,5-bisphosphate. The Ca2+-releasing action of inositol 1,4,5-trisphosphate is not inhibited by high [Ca2+], nor is it dependent on [ATP] in the range of 50 microM-1.5 mM. These results suggest a role for inositol 1,4,5-trisphosphate as a second messenger in hormone-induced Ca2+ mobilisation, and that a specific receptor is involved in the Ca2+-release mechanism.  相似文献   

20.
Activation of surface membrane receptors coupled to phospholipase C results in the generation of cytoplasmic Ca2+ signals comprised of both intracellular Ca2+ release, and enhanced entry of Ca2+ across the plasma membrane. A primary mechanism for this Ca2+ entry process is attributed to store-operated Ca2+ entry, a process that is activated by depletion of Ca2+ ions from an intracellular store by inositol 1,4,5-trisphosphate. Our understanding of the mechanisms underlying both Ca2+ release and store-operated Ca2+ entry have evolved from experimental approaches that include the use of fluorescent Ca2+ indicators and electrophysiological techniques. Pharmacological manipulation of this Ca2+ signaling process has been somewhat limited; but recent identification of key molecular players, STIM and Orai family proteins, has provided new approaches. Here we describe practical methods involving fluorescent Ca2+ indicators and electrophysiological approaches for dissecting the observed intracellular Ca2+ signal to reveal characteristics of store-operated Ca2+ entry, highlighting the advantages, and limitations, of these approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号