首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The targeting and translocation of proteins is an essentially required and conserved process in all the living organisms. This complex process involves multiple steps and requires a variety of factors before the protein reaches its final destination. The major components of translocation machinery are signal recognition particle (SRP) and secretory (Sec) complex. These are composed of highly conserved components. SRP contains SRP RNA and other polypeptides such as SRP9, SRP14, SRP19 and SRP54. Sec complex is composed of Sec61αβγ, Sec62 and Sec63. In this review using bioinformatics approach we have shown that the P. falciparum genome contains the homologues for all of these and other factors such as SRP receptor, and TRAM (translocation associated membrane protein), which are required for post- and co-translational protein translocation. We have also shown the various steps of translocation in a hypothetical model.  相似文献   

2.
《The Journal of cell biology》1993,120(5):1113-1121
The 54-kD subunit of the signal recognition particle (SRP54) binds to signal sequences of nascent secretory and transmembrane proteins. SRP54 consists of two separable domains, a 33-kD amino-terminal domain that contains a GTP-binding site (SRP54G) and a 22-kD carboxy-terminal domain (SRP54M) containing binding sites for both the signal sequence and SRP RNA. To examine the function of the two domains in more detail, we have purified SRP54M and used it to assemble a partial SRP that lacks the amino-terminal domain of SRP54 [SRP(-54G)]. This particle recognized signal sequences in two independent assays, albeit less efficiently than intact SRP. Analysis of the signal sequence binding activity of free SRP54 and SRP54M supports the conclusion that SRP54M binds signal sequences with lower affinity than the intact protein. In contrast, when SRP(-54G) was assayed for its ability to promote the translocation of preprolactin across microsomal membranes, it was completely inactive, apparently because it was unable to interact normally with the SRP receptor. These results imply that SRP54G plays an essential role in SRP-mediated targeting of nascent chain-ribosome complexes to the ER membrane and also influences signal sequence recognition, possibly by promoting a tighter association between signal sequences and SRP54M.  相似文献   

3.
In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 A resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely alpha-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 A resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19*SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP.  相似文献   

4.
The signal recognition particle (SRP) binds to signal sequences when they emerge from a translating ribosome and targets the complex of ribosome, nascent chain and SRP to the membrane of the rough endoplasmic reticulum (rER) allowing the co-translational translocation of the nascent chain. By photo-crosslinking it has been shown that the signal sequence of preprolactin (PPL) only interacts with the methionine-rich (M) domain of the 54 kDa protein subunit (SRP54) of SRP. Here we show that (i) a signal-anchor sequence is likewise crosslinked only to the methionine-rich domain of SRP54, (ii) free SRP54 can interact with signal sequences independently of the other components of SRP, (iii) its M domain suffices to perform this function, and (iv) an essentially intact M domain is required for signal sequence recognition. Alkylation of the N+G domain in intact SRP54 with N-ethyl maleimide (NEM), but not after cleavage with V8 protease, prevents the binding of a signal sequence to the M domain. This suggests a proximity between the N+G and M domains of SRP54 and raises the possibility that the role of the N+G domain may be to regulate the binding and/or the release of signal sequences.  相似文献   

5.
Song W  Raden D  Mandon EC  Gilmore R 《Cell》2000,100(3):333-343
Targeting of ribosome-nascent chain complexes to the translocon in the endoplasmic reticulum is mediated by the concerted action of the signal recognition particle (SRP) and the SRP receptor (SR). Ribosome-stripped microsomes were digested with proteases to sever cytoplasmic domains of SRalpha, SRbeta, TRAM, and the Sec61 complex. We characterized protein translocation intermediates that accumulate when Sec61alpha or SRbeta is inactivated by proteolysis. In the absence of a functional Sec61 complex, dissociation of SRP54 from the signal sequence is blocked. Experiments using SR proteoliposomes confirmed the assembly of a membrane-bound posttargeting intermediate. These results strongly suggest that the Sec61 complex regulates the GTP hydrolysis cycle of the SRP-SR complex at the stage of signal sequence dissociation from SRP54.  相似文献   

6.
Maity TS  Leonard CW  Rose MA  Fried HM  Weeks KM 《Biochemistry》2006,45(50):14955-14964
Many ribonucleoprotein complexes assemble stepwise in distinct cellular compartments, a process that usually involves bidirectional transport of both RNA and proteins between the nucleus and cytoplasm. The biological rationale for such complex transport steps in RNP assembly is obscure. One important example is the eukaryotic signal recognition particle (SRP), a cytoplasmic RNP consisting of one RNA and six proteins. Prior in vivo studies support an "SRP54-late" assembly model in which all SRP proteins, except SRP54, are imported from the cytoplasm to the nucleus to bind SRP RNA. This partially assembled complex is then exported to the cytoplasm where SRP54 binds and forms the SRP holocomplex. Here we show that native SRP assembly requires segregated and ordered binding by its protein components. A native ternary complex forms in vitro when SRP19 binds the SRP RNA prior to binding by SRP54, which approximates the eukaryotic cellular pathway. In contrast, the presence of SRP54 disrupts native assembly of SRP19, such that two RNA-binding loops in SRP19 misfold. These results imply that SRP54 must be sequestered during early SRP assembly steps, as apparently occurs in vivo, for proper assembly of the SRP to occur. Our findings emphasize that spatial compartmentalization provides an additional level of regulation that prevents competition among components and can function to promote native assembly of the eukaryotic SRP.  相似文献   

7.
The signal recognition particle (SRP) is a unique moiety in living cells, which has been conserved during evolution for protein targeting and translocation across membranes in collaboration with its receptor (SR). The structural and functional features of its components, (six polypeptides and RNA) are being rapidly elucidated. We have endeavored in this review to epitomize most recent advances in this field. Its two domains (S and Alu) play important roles in signal recognition, elongation arrest and protein targeting of the polypeptide being synthesized in the cytoplasm. SRP14 and SRP9 help in the elongation arrest by interacting with signal peptide. GTPase activity of SRP54 releases SRP from SR. In addition, alpha and beta subunits of SR also possess GTPase activities and the three GTPases help in docking of nascent peptide chain-ribosome complex to the translocation site. Further strides in proteomics employing mass spectrometry and X-ray crystallography are expected to throw more light on the molecular events occurring during protein targeting and translocation.  相似文献   

8.
The identification of GTP-binding sites in the 54-kDa subunit of the signal recognition particle (SRP) and in both the alpha and beta subunits of the SRP receptor has complicated the task of defining the step in the protein translocation reaction that is controlled by the GTP-binding site in the SRP. Ribonucleotide binding assays show that the purified SRP can bind GDP or GTP. However, crosslinking experiments show that SRP54 can recognize the signal sequence of a nascent polypeptide in the absence of GTP. Targeting of SRP-ribosome-nascent polypeptide complexes, formed in the absence of GTP, to microsomal membranes likewise proceeds normally. To separate the GTPase cycles of SRP54 and the alpha subunit of the SRP receptor (SR alpha), we employed an SR alpha mutant that displays a markedly reduced affinity for GTP. We observed that the dissociation of SRP54 from the signal sequence and the insertion of the nascent polypeptide into the translocation site could only occur when GTP binding to SR alpha was permitted. These data suggest that the GTP binding and hydrolysis cycles of both SRP54 and SR alpha are initiated upon formation of the SRP-SRP receptor complex.  相似文献   

9.
The mammalian signal recognition particle (SRP) catalytically promotes cotranslational translocation of signal sequence containing proteins across the endoplasmic reticulum membrane. While the S-domain of SRP binds the N-terminal signal sequence on the nascent polypeptide, the Alu domain of SRP temporarily interferes with the ribosomal elongation cycle until the translocation pore in the membrane is correctly engaged. Here we present biochemical and biophysical evidence for a hierarchical assembly pathway of the SRP Alu domain. The proteins SRP9 and SRP14 first heterodimerize and then initially bind to the Alu RNA 5' domain. This creates the binding site for the Alu RNA 3' domain. Alu RNA then undergoes a large conformational change with the flexibly linked 3' domain folding back by 180 degrees onto the 5' domain complex to form the final compact Alu ribonucleoprotein particle (Alu RNP). We discuss the possible mechanistic consequences of the likely reversibility of this final step with reference to translational regulation by the SRP Alu domain and with reference to the structurally similar Alu RNP retroposition intermediates derived from Alu elements in genomic DNA.  相似文献   

10.
The signal recognition particle in S. cerevisiae.   总被引:31,自引:0,他引:31  
B C Hann  P Walter 《Cell》1991,67(1):131-144
We have identified the Saccharomyces cerevisiae homolog of the signal recognition particle (SRP) and characterized its function in vivo. S. cerevisiae SRP is a 16S particle that includes a homolog of the signal sequence-binding protein subunit of SRP (SRP54p) and a small cytoplasmic RNA (scR1). Surprisingly, the genes encoding scR1 and SRP54p are not essential for growth, though SRP-deficient cells grow poorly, suggesting that SRP function can be partially by-passed in vivo. Protein translocation across the ER membrane is impaired in SRP-deficient cells, indicating that yeast SRP, like its mammalian counterpart, functions in this process. Unexpectedly, the degree of the translocation defect varies for different proteins. The ability of some proteins to be efficiently targeted in SRP-deficient cells may explain why previous genetic and biochemical analyses in yeast and bacteria did not reveal components of the SRP-dependent protein targeting pathway.  相似文献   

11.
The signal sequence of nascent preprolactin interacts with the 54-kD protein of the signal recognition particle (SRP54). To identify the domain or site on SRP54 that interacts with the signal sequence we used a photocross-linking approach followed by limited proteolysis and immunoprecipitation using anti-peptide antibodies specific for defined regions of SRP54. We found that the previously identified methionine-rich RNA-binding domain of SRP54 (SRP54M domain) also interacts with the signal sequence. The smallest fragment that was found to be crosslinked to the signal sequence comprised the COOH-terminal 6-kD segment of the SRP54M domain. No cross-link to the putative GTP-binding domain of SRP54 (SRP54G domain) was found. Proteolytic cleavage between the SRP54M domain and SRP54G domain did not impair the subsequent interaction between the signal sequence and the SRP54M domain. Our results show that both the RNA binding and signal sequence binding functions of SRP54 are performed by the SRP54M domain.  相似文献   

12.
The signal recognition particle (SRP) is a ribonucleoprotein particle involved in GTP-dependent translocation of secretory proteins across membranes. In Archaea and Eukarya, SRP19 binds to 7SL RNA and promotes the incorporation of SRP54, which contains the binding sites for GTP, the signal peptide, and the membrane-bound SRP receptor. We have determined the crystal structure of Methanococcus jannaschii SRP19 bound to the S domain of human 7SL RNA at 2.9 A resolution. SRP19 clamps the tetraloops of two branched helices (helices 6 and 8) and allows them to interact side by side. Helix 6 acts as a splint for helix 8 and partially preorganizes the binding site for SRP54 in helix 8, thereby facilitating the binding of SRP54 in assembly.  相似文献   

13.
Protein SRP54 is an integral part of the mammalian signal recognition particle (SRP), a cytosolic ribonucleoprotein complex which associates with ribosomes and serves to recognize, bind, and transport proteins destined for the membrane or secretion. The methionine-rich M-domain of protein SRP54 (SRP54M) binds the SRP RNA and the signal peptide as the nascent protein emerges from the ribosome. A focal point of this critical cellular function is the detailed understanding of how different hydrophobic signal peptides are recognized efficiently and transported specifically, despite considerable variation in sequence. We have solved the crystal structure of a conserved functional subdomain of the human SRP54 protein (hSRP54m) at 2.1 A resolution showing a predominantly alpha helical protein with a large fraction of the structure available for binding. RNA binding is predicted to occur in the vicinity of helices 4 to 6. The N-terminal helix extends significantly from the core of the structure into a large but constricted hydrophobic groove of an adjacent molecule, thus revealing molecular details of possible interactions between alpha helical signal peptides and human SRP54.  相似文献   

14.
Trypanosomes are protozoan parasites that have a major impact on health. This family diverged very early from the eukaryotic lineage and possesses unique RNA processing mechanisms such as trans-splicing and RNA editing. The trypanosome signal recognition particle (SRP) has a unique composition compared with all known SRP complexes, because it contains two RNA molecules, the 7SL RNA and a tRNA-like molecule. RNA interference was utilized to elucidate the essentiality of the SRP pathway and its role in protein translocation in Trypanosoma brucei. The production of double stranded RNA specific for the signal peptide-binding protein SRP54 induced the degradation of the mRNA and a loss of the SRP54 protein. SRP54 depletion elicited inhibition in growth and cytokinesis, suggesting that the SRP pathway is essential. The translocation of four signal peptide-containing proteins was examined. Surprisingly, the proteins were translocated to the endoplasmic reticulum and properly processed. However, the surface EP procyclin, the lysosomal protein p67, and the flagellar pocket protein CRAM were mislocalized and accumulated in megavesicles, most likely because of a secondary effect on protein sorting. The translocation of these proteins to the endoplasmic reticulum under SRP54 depletion suggests that an alternative pathway for protein translocation exists in trypanosomes.  相似文献   

15.
Two representative genes for the 54 kDa protein subunit of the signal recognition particle (SRP54) of tomato were cloned. It was shown that both genes are expressed in the tomato cv. Rentita. SRP54 is encoded by nine exons distributed over 10 kb of genomic sequence. The amino acid sequences deduced for the two SRP54 genes are 92% identical and the calculated protein size is 55 kDa. Like the homologous proteins isolated from other eukaryotes, the tomato SRP54 is evidently divided into two domains. As deduced from sequence motif identity, the N-terminally located G-domain can be assumed to have GTPase activity. The C-terminal part of the protein is methionine rich (14% methionine) and represents the M-domain. In in vitro binding experiments, SRP54 of tomato was able to attach to the 7S RNA of tomato, its natural binding partner in the SRP. This interaction can only take place in a trimeric complex consisting of 7S RNA, SRP54 and SRP19. The latter protein subunit of the SRP complex is assumed to induce a conformational change in the 7S RNA. The human SRP19 was able to mediate the binding of the tomato SRP54 to the 7S RNA, irrespective of whether this latter originated from tomato or man.  相似文献   

16.
Small cytoplasmic RNA (scRNA) is a metabolically stable homologue of mammalian SRP RNA that contains an Alu-like domain. The Bacillus subtilis histone-like protein HBsu can bind this domain. We demonstrate here that repressing the level of HBsu results in slow growth and the accumulation of precursor of beta-lactamase fusion proteins having the signal sequence of alkaline protease, penicillin binding protein 5* (PBP5*) or CGTase. The degree of the translocation defect varied among the various signal sequences tested. A pulse-chase experiment showed that processing the alpha-amylase signal sequence is significantly inhibited in HBsu-depleted cells. Northern blot analysis indicated that repressing the HBsu gene induces scRNA upregulation, indicating that the defective translocation of presecretory proteins is not due to a reduced scRNA level. The data presented here suggest that HBsu plays a pivotal role in SRP function rather than simply stabilizing the other SRP components such as scRNA.  相似文献   

17.
《The Journal of cell biology》1990,111(5):1793-1802
Signal recognition particle (SRP) plays the key role in targeting secretory proteins to the membrane of the endoplasmic reticulum (Walter, P., and V. R. Lingappa. 1986. Annu. Rev. Cell Biol. 2:499- 516). It consists of SRP7S RNA and six proteins. The 54-kD protein of SRP (SRP54) recognizes the signal sequence of nascent polypeptides. The 19-kD protein of SRP (SRP19) binds to SRP7S RNA directly and is required for the binding of SRP54 to the particle. We used deletion mutants of SRP19 and SRP54 and an in vitro assembly assay in the presence of SRP7S RNA to define the regions in both proteins which are required to form a ribonucleoprotein particle. Deletion of the 21 COOH- terminal amino acids of SRP19 does not interfere with its binding to SRP7S RNA. Further deletions abolish SRP19 binding to SRP7S RNA. The COOH-terminal 207 amino acids of SRP54 (M domain) were found to be necessary and sufficient for binding to the SRP19/7S RNA complex in vitro. Limited protease digestion of purified SRP confirmed our results for SRP54 from the in vitro binding assay. The SRP54M domain could also bind to Escherichia coli 4.5S RNA that is homologous to part of SRP7S RNA. We suggest that the methionine-rich COOH terminus of SRP54 is a RNA binding domain and that SRP19 serves to establish a binding site for SRP54 on the SRP7S RNA.  相似文献   

18.
The signal recognition particle (SRP) is a ribonucleoprotein complex involved in the recognition and targeting of nascent extracytoplasmic proteins in all three domains of life. In Archaea, SRP contains 7S RNA like its eukaryal counterpart, yet only includes two of the six protein subunits found in the eukaryal complex. To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 of the halophilic archaeon Haloferax volcanii have been expressed and purified, and used to reconstitute the ternary SRP complex. The availability of SRP components from a haloarchaeon offers insight into the structure, assembly and function of this ribonucleoprotein complex at saturating salt conditions. While the amino acid sequences of H.volcanii SRP19 and SRP54 are modified presumably as an adaptation to their saline surroundings, the interactions between these halophilic SRP components and SRP RNA appear conserved, with the possibility of a few exceptions. Indeed, the H.volcanii SRP can assemble in the absence of high salt. As reported with other archaeal SRPs, the limited binding of H.volcanii SRP54 to SRP RNA is enhanced in the presence of SRP19. Finally, immunolocalization reveals that H.volcanii SRP54 is found in the cytosolic fraction, where it is associated with the ribosomal fraction of the cell.  相似文献   

19.
The 54 kDa subunit of the signal recognition particle (SRP54) binds to the signal sequences of nascent secretory and membrane proteins and it contributes to the targeting of these precursors to the membrane of the endoplasmic reticulum (ER). At the ER membrane, the binding of the signal recognition particle (SRP) to its receptor triggers the release of SRP54 from its bound signal sequence and the nascent polypeptide is transferred to the Sec61 translocon for insertion into, or translocation across, the ER membrane. In the current article, we have characterized the specificity of anti-SRP54 autoantibodies, which are highly characteristic of polymyositis patients, and investigated the effect of these autoantibodies on the SRP function in vitro. We found that the anti-SRP54 autoantibodies had a pronounced and specific inhibitory effect upon the translocation of the secretory protein preprolactin when analysed using a cell-free system. Our mapping studies showed that the anti-SRP54 autoantibodies bind to the amino-terminal SRP54 N-domain and to the central SRP54 G-domain, but do not bind to the carboxy-terminal M-domain that is known to bind ER signal sequences. Nevertheless, anti-SRP54 autoantibodies interfere with signal-sequence binding to SRP54, most probably by steric hindrance. When the effect of anti-SRP autoantibodies on protein targeting the ER membrane was further investigated, we found that the autoantibodies prevent the SRP receptor-mediated release of ER signal sequences from the SRP54 subunit. This observation supports a model where the binding of the homologous GTPase domains of SRP54 and the α-subunit of the SRP receptor to each other regulates the release of ER signal sequences from the SRP54 M-domain.  相似文献   

20.
Y Thomas  N Bui    K Strub 《Nucleic acids research》1997,25(10):1920-1929
The signal recognition particle (SRP) provides the molecular link between synthesis of polypeptides and their concomitant translocation into the endoplasmic reticulum. During targeting, SRP arrests or delays elongation of the nascent chain, thereby presumably ensuring a high translocation efficiency. Components of the Alu domain, SRP9/14 and the Alu sequences of SRP RNA, have been suggested to play a role in the elongation arrest function of SRP. We generated a truncated SRP14 protein, SRP14-20C, which forms, together with SRP9, a stable complex with SRP RNA. However, particles reconstituted with SRP9/14-20C, RC(9/14-20C), completely lack elongation arrest activity. RC(9/14-20C) particles have intact signal recognition, targeting and ribosome binding activities. SRP9/14-20C therefore only impairs interactions with the ribosome that are required to effect elongation arrest. This result provides evidence that direct interactions between the Alu domain components and the ribosome are required for this function. Furthermore, SRP9/14-20C binding to SRP RNA results in tertiary structure changes in the RNA. Our results strongly indicate that these changes account for the negative effect of SRP14 truncation on elongation arrest, thus revealing a critical role of the RNA in this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号