首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accurate measurement of the in vivo knee joint kinematics in six degrees-of-freedom (6DOF) remains a challenge in biomedical engineering. We have adapted a dual fluoroscopic imaging system (DFIS) to investigate the various in vivo dynamic knee joint motions. This paper presents a thorough validation of the accuracy and repeatability of the DFIS system when used to measure 6DOF dynamic knee kinematics. First, the validation utilized standard geometric spheres made from different materials to demonstrate the capability of the DFIS technique to determine the object positions under changing speeds. The translational pose of the spheres could be recreated to less than 0.15±0.09 mm for velocities below 300 mm/s. Next, tantalum beads were inserted into the femur and tibia of two fresh frozen cadaver knees to compare the dynamic kinematics measured by matching knee models to the kinematics from the tantalum bead matching—a technique similar to Roentgen stereophotogrammetric analysis (RSA). Each cadaveric knee was attached to the crosshead of a tensile testing machine and vertically translated at a rate of 16.66 mm/s while images were captured with the DFIS. Subsequently, the tibia was held fixed and the femur manually flexed from full extension to 90° of flexion, as the DFIS acquired images. In vitro translation of the cadaver knee using the tensile testing machine deviated from predicted values by 0.08±0.14 mm for the matched knee models. The difference between matching the knee and tantalum bead models during the dynamic flexion–extension motion of the knee was 0.1±0.65°/s in flexion speed; 0.24±0.16 mm in posterior femoral translation; and 0.16±0.61° in internal–external tibial rotation. Finally, we applied the method to investigate the knee kinematics of a living subject during a step ascent and treadmill gait. High repeatability was demonstrated for the in vivo application. Thus, the DFIS provides an easy and powerful tool for accurately determining 6DOF positions of the knee when performing daily functional activities.  相似文献   

2.
Traditionally the FHA is calculated stepwise between data points (sFHA), requiring down sampling to achieve a sufficiently large step size to minimize error. This paper proposes an alternate FHA calculation approach (rFHA), using a unique reference position to reduce error associated with small rotation angles. This study demonstrated error reduction using the rFHA approach relative to the sFHA approach. Furthermore, the rFHA in the femur is defined at each time point providing a continuous representation of joint motion. These characteristics enable the rFHA to quantify small differences in knee joint motion, providing an excellent measure to quantify knee joint stability.  相似文献   

3.
IntroductionMusculoskeletal modeling allows insight into the interaction of muscle force and knee joint kinematics that cannot be measured in the laboratory. However, musculoskeletal models of the lower extremity commonly use simplified representations of the knee that may limit analyses of the interaction between muscle forces and joint kinematics. The goal of this research was to demonstrate how muscle forces alter knee kinematics and consequently muscle moment arms and joint torque in a musculoskeletal model of the lower limb that includes a deformable representation of the knee.MethodsTwo musculoskeletal models of the lower limb including specimen-specific articular geometries and ligament deformability at the knee were built in a finite element framework and calibrated to match mean isometric torque data collected from 12 healthy subjects. Muscle moment arms were compared between simulations of passive knee flexion and maximum isometric knee extension and flexion. In addition, isometric torque results were compared with predictions using simplified knee models in which the deformability of the knee was removed and the kinematics at the joint were prescribed for all degrees of freedom.ResultsPeak isometric torque estimated with a deformable knee representation occurred between 45° and 60° in extension, and 45° in flexion. The maximum isometric flexion torques generated by the models with deformable ligaments were 14.6% and 17.9% larger than those generated by the models with prescribed kinematics; by contrast, the maximum isometric extension torques generated by the models were similar. The change in hamstrings moment arms during isometric flexion was greater than that of the quadriceps during isometric extension (a mean RMS difference of 9.8 mm compared to 2.9 mm, respectively).DiscussionThe large changes in the moment arms of the hamstrings, when activated in a model with deformable ligaments, resulted in changes to flexion torque. When simulating human motion, the inclusion of a deformable joint in a multi-scale musculoskeletal finite element model of the lower limb may preserve the realistic interaction of muscle force with knee kinematics and torque.  相似文献   

4.
Standard registration techniques of bone morphology to motion analysis data often lead to unsatisfactory motion simulation because of discrepancies during the location of anatomical landmarks in the datasets. This paper describes an iterative registration method of a three-dimensional (3D) skeletal model with both 6 degrees-of-freedom joint kinematics and standard motion analysis data. The method is demonstrated in this paper on the lower limb. The method includes two steps. A primary registration allowed synchronization of in vitro kinematics of the knee and ankle joints using flexion/extension angles from in vivo gait analysis. Results from primary registration were then improved by a so-called advanced registration, which integrated external constraints obtained from experimental gait pre-knowledge. One cadaver specimen was analyzed to obtain both joint kinematics of knee and ankle joints using 3D electrogoniometry, and 3D bone morphology from medical imaging data. These data were registered with motion analysis data from a volunteer during the execution of locomotor tasks. Computer graphics output was implemented to visualize the results for a motion of sitting on a chair. Final registration results allowed the observation of both in vivo motion data and joint kinematics from the synchronized specimen data. The method improved interpretation of gait analysis data, thanks to the combination of realistic 3D bone models and joint mechanism. This method should be of interest both for research in gait analysis and medical education. Validation of the overall method was performed using RMS of the differences between bone poses estimated after registration and original data from motion analysis.  相似文献   

5.
The purpose of this study was to determine the changes in the axis of rotation of the knee that occur during the stance phase of running. Using intracortical pins, the three-dimensional skeletal kinematics of three subjects were measured during the stance phase of five running trials. The stance phase was divided into equal motion increments for which the position and orientation of the finite helical axes (FHA) were calculated relative to a tibial reference frame. Results were consistent within and between subjects. At the beginning of stance, the FHA was located at the midepicondylar point and during the flexion phase moved 20mm posteriorly and 10mm distally. At the time of peak flexion, the FHA shifted rapidly by about 10-20mm in proximal and posterior direction. The angle between the FHA and the tibial transverse plane increased gradually during flexion, to about 15 degrees of medial inclination, and then returned to zero at the start of the extension phase. These changes in position and orientation of FHA in the knee should be considered in analyses of muscle function during human movement, which require moment arms to be defined relative to a functional rotation axis. The finding that substantial changes in axis of rotation occurred independent of flexion angle suggests that musculoskeletal models must have more than one kinematic degree-of-freedom at the knee. The same applies to the design of knee prostheses, if the goal is to restore normal muscle function.  相似文献   

6.
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p < 0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom.  相似文献   

7.
Patello-femoral disorders are often caused by changes of patello-femoral and/or tibio-femoral kinematics. However, until now there has been no quantitative in vivo technique, that is able to obtain 3D kinematics and contact areas of all knee compartments simultaneously on a non-invasive basis. The aim of this study was therefore to develop and apply a technique which allows for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint during different knee flexion angles and under neuromuscular activation patterns. One knee of each of the 10 healthy volunteers was examined in an open MR system under flexing isometric muscle activity at 30 degrees and 90 degrees. Three-dimensional kinematics and contact areas of the patello-femoral and tibio-femoral joints were analyzed by 3D image postprocessing. The reproducibility of the imaging technique yielded a coefficient of variation of 4.6% for patello-femoral, 4.7% for femoro-tibial displacement and 8.6% for contact areas. During knee flexion (30-90 degrees ), patella tilt (opened to medial) decreased (8.8+/-3.4 degrees vs. 4.6+/-3.1 degrees, p<0.05), while lateral patellar shift increased significantly (1.6+/-2.3mm vs. 3.4+/-3.0mm, p<0.05). Furthermore, a significant posterior translation and external rotation of the femur relative to the tibia was observed. Patello-femoral contact areas increased significantly in size (134+/-60mm(2) vs. 205+/-96 mm(2)) during knee flexion. This technique shows a high reproducibility and provides physiologic in vivo data of 3D kinematics and contact areas of the patello-femoral and the tibio-femoral joint during knee flexion. This allows for advanced in vivo diagnostics, and may help to improve therapy of patello-femoral disorders in the future.  相似文献   

8.
In order to obtain the lower limb kinematics from skin-based markers, the soft tissue artefact (STA) has to be compensated. Global optimization (GO) methods rely on a predefined kinematic model and attempt to limit STA by minimizing the differences between model predicted and skin-based marker positions. Thus, the reliability of GO methods depends directly on the chosen model, whose influence is not well known yet.This study develops a GO method that allows to easily implement different sets of joint constraints in order to assess their influence on the lower limb kinematics during gait. The segment definition was based on generalized coordinates giving only linear or quadratic joint constraints. Seven sets of joint constraints were assessed, corresponding to different kinematic models at the ankle, knee and hip: SSS, USS, PSS, SHS, SPS, UHS and PPS (where S, U and H stand for spherical, universal and hinge joints and P for parallel mechanism). GO was applied to gait data from five healthy males.Results showed that the lower limb kinematics, except hip kinematics, knee and ankle flexion–extension, significantly depend on the chosen ankle and knee constraints. The knee parallel mechanism generated some typical knee rotation patterns previously observed in lower limb kinematic studies. Furthermore, only the parallel mechanisms produced joint displacements.Thus, GO using parallel mechanism seems promising. It also offers some perspectives of subject-specific joint constraints.  相似文献   

9.
A reproducible method for studying three-dimensional knee kinematics   总被引:1,自引:0,他引:1  
The methods used in movement analysis often rely on the definition of joint coordinate systems permitting three-dimensional (3D) kinematics. The first aim of this research project was to present a functional and postural method (FP method) to define a bone-embedded anatomical frame (BAF) on the femur and tibia, and, subsequently, a knee joint coordinate system. The repeatability of the proposed method was also assessed. Using FP method to define the BAFs, 4 kinematic parameters (flexion/extension, abduction/adduction, tibial internal/external rotation, and antero-posterior translation) were computed for 15 subjects walking on a treadmill. The repeatability for all four kinematic parameters was then assessed, using intra- and inter-observer settings. After pooling the results for all observers, the mean repeatability value ranged between 0.4 degrees and 0.8 degrees for rotation angles and between 0.8 and 2.2 mm for translation.  相似文献   

10.
Improper patellar tracking is often considered to be the cause of patellar-femoral pain. Unfortunately, our knowledge of patellar-femoral-tibial (knee) joint kinematics is severely limited due to a lack of three-dimensional, noninvasive, in vivo measurement techniques. This study presents the first large-scale, dynamic, three-dimensional, noninvasive, in vivo study of nonimpaired knee joint kinematics during volitional leg extensions. Cine-phase contrast magnetic resonance imaging was used to measure the velocity profiles of the patella, femur, and tibia in 18 unimpaired knees during leg extensions, resisted by a 34 N weight. Bone displacements were calculated through integration and then converted into three-dimensional orientation angles. We found that the patella displaced laterally, superiorly, and anteriorly as the knee extended. Further, patellar flexion lagged knee flexion, patellar tilt was variable, and patellar rotation was fairly constant throughout extension.  相似文献   

11.
A new method is presented for measuring joint kinematics by optimally matching modeled trajectories of geometric surface models of bones with cine phase contrast (cine-PC) magnetic resonance imaging data. The incorporation of the geometric bone models (GBMs) allows computation of kinematics based on coordinate systems placed relative to full 3-D anatomy, as well as quantification of changes in articular contact locations and relative velocities during dynamic motion. These capabilities are additional to those of cine-PC based techniques that have been used previously to measure joint kinematics during activity. Cine-PC magnitude and velocity data are collected on a fixed image plane prescribed through a repetitively moved skeletal joint. The intersection of each GBM with a simulated image plane is calculated as the model moves along a computed trajectory, and cine-PC velocity data are sampled from the regions of the velocity images within the area of this intersection. From the sampled velocity data, the instantaneous linear and angular velocities of a coordinate system fixed to the GBM are estimated, and integration of the linear and angular velocities is used to predict updated trajectories. A moving validation phantom that produces motions and velocity data similar to those observed in an experiment on human knee kinematics was designed. This phantom was used to assess cine-PC rigid body tracking performance by comparing the kinematics of the phantom measured by this method to similar measurements made using a magnetic tracking system. Average differences between the two methods were measured as 2.82 mm rms for anterior/posterior tibial position, and 2.63 deg rms for axial rotation. An intertrial repeatability study of human knee kinematics using the new method produced rms differences in anterior/posterior tibial position and axial rotation of 1.44 mm and 2.35 deg. The performance of the method is concluded to be sufficient for the effective study of kinematic changes caused to knees by soft tissue injuries.  相似文献   

12.
The purpose of this paper was to describe a technique that enables three-dimensional (3D) gait kinematics to be obtained using an electromagnetic tracking system, and to report the intra-trial, intra-day/inter-tester and inter-day/intra-tester repeatability of kinematic gait data obtained using this technique. Ten able-bodied adults underwent four gait assessments; the same two testers tested each subject independently on two different days. Gait assessments were conducted on a custom-built long-bed treadmill with no metal components between the rollers. Each gait assessment involved familiarisation to treadmill walking, subject anatomical and functional calibration, and a period of steady-state treadmill walking at a self-selected speed. Following data collection, 3D joint kinematics were calculated using the joint coordinate system approach. 3D joint angle waveforms for 10 left and right strides were extracted and temporally normalised for each trial. Intra-trial, intra-day/inter-tester and inter-day/intra-tester repeatability of the temporally normalised kinematic waveforms were quantified using the coefficient of multiple determination (CMD). CMDs for joint kinematics averaged 0.942 intra-trial, 0.849 intra-day/inter-tester and 0.773 inter-day/intra-tester. In general, sagittal plane kinematics were more repeatable than frontal or transverse plane kinematics, and kinematics at the hip were more repeatable than at the knee or ankle. The level of repeatability of kinematic gait data obtained during treadmill walking using this protocol was equal or superior to that reported previously for overground walking using image-based protocols.  相似文献   

13.
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle–tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model.  相似文献   

14.
Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention.  相似文献   

15.
The movement of the knee joint consists of a coupled motion between the tibiofemoral and patellofemoral articulations. This study measured the six degrees-of-freedom kinematics of the tibia, femur, and patella using dual-orthogonal fluoroscopy and magnetic resonance imaging. Ten normal knees from ten living subjects were investigated during weightbearing flexion from full extension to maximum flexion. The femoral and the patellar motions were measured relative to the tibia. The femur externally rotated by 12.9 deg and the patella tilted laterally by 16.3 deg during the full range of knee flexion. Knee flexion was strongly correlated with patellar flexion (R(2)=0.91), posterior femoral translation was strongly correlated to the posterior patellar translation (R(2)=0.87), and internal-external rotation of the femur was correlated to patellar tilt (R(2)=0.73) and medial-lateral patellar translation (R(2)=0.63). These data quantitatively indicate a kinematic coupling between the tibia, femur, and patella, and provide base line information on normal knee joint kinematics throughout the full range of weightbearing flexion. The data also suggest that the kinematic coupling of tibia, femur, and patella should be considered when investigating patellar pathologies and when developing surgical techniques to treat knee joint diseases.  相似文献   

16.
《IRBM》2014,35(1):53-57
Skin marker motion analyses are the most widespread techniques to study human movements. Nevertheless, trajectories obtained through such methods are biased because of soft tissue artifacts and lead, consequently, to false collisions and dislocations when bone motion is under investigation. It's an open challenge to enhance kinematics curves particularly for the knee joint involved in the mechanics of gait. The kinematics of flexion/extension of the knee is classically modeled by a rotation around a fixed axis. However, the trend of current biomechanical studies is to improve this modeling by introducing a morphological knowledge such as ligament constraints. In this paper, we propose to highlight the morpho-functionnal link on this joint thanks to two contributions. The first one consists in proposing a method capable of extracting a kinematics of flexion/extension of the knee from a unique CT scan. This method is based on the determination of a mobile axis capable of keeping the information of rolling/sliding. The second one consists in a qualitative and quantitative temporal analysis of the position of the bones during the movement. We compare the results of the two kinematics (static and mobile axis) using original figures of articular coherence and an associated index.  相似文献   

17.
Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling – spherical, hinge, degree-of-freedom coupling curves and parallel mechanism – against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.  相似文献   

18.
One proposed mechanism of patellofemoral pain, increased stress in the joint, is dependent on forces generated by the quadriceps muscles. Describing causal relationships between muscle forces, tissue stresses, and pain is difficult due to the inability to directly measure these variables in vivo. The purpose of this study was to estimate quadriceps forces during walking and running in a group of male and female patients with patellofemoral pain (n=27, 16 female; 11 male) and compare these to pain-free controls (n=16, 8 female; 8 male). Subjects walked and ran at self-selected speeds in a gait laboratory. Lower limb kinematics and electromyography (EMG) data were input to an EMG-driven musculoskeletal model of the knee, which was scaled and calibrated to each individual to estimate forces in 10 muscles surrounding the joint. Compared to controls, the patellofemoral pain group had greater co-contraction of quadriceps and hamstrings (p=0.025) and greater normalized muscle forces during walking, even though the net knee moment was similar between groups. Muscle forces during running were similar between groups, but the net knee extension moment was less in the patellofemoral pain group compared to controls. Females displayed 30–50% greater normalized hamstring and gastrocnemius muscle forces during both walking and running compared to males (p<0.05). These results suggest that some patellofemoral pain patients might experience greater joint contact forces and joint stresses than pain-free subjects. The muscle force data are available as supplementary material.  相似文献   

19.
The aim of the study was to examine the external knee adduction moments in a group of older and younger adults while descending stairs and thus the possibility of an increased risk of knee osteoarthritis due to altered knee joint loading in the elderly. Twenty-seven older and 16 younger adults descended a purpose-built staircase. A motion capture system and a force plate were used to determine the subjects' 3D kinematics and ground reaction forces (GRF) during locomotion. Calculation of the leg kinematics and kinetics was done by means of a rigid, three-segment, 3D leg model. In the initial portion of the support phase, older adults showed a more medio-posterior GRF vector relative to the ankle joint, leading to lower ankle joint moments (P<0.05). At the knee, the older adults demonstrated a more medio-posterior directed GRF vector, increasing in knee flexion and adduction in the second part of the single support phase (P<0.05). Further, GRF magnitude was lower in the initial and higher in the mid-portions of the support phase for the elderly (P<0.05). The results show that older adults descend stairs by using the trailing leg before the initiation of the double support phase more compared to the younger ones. The consequence of this altered control strategy while stepping down is a more medially directed GRF vector increasing the magnitude of external knee adduction moment in the elderly. The observed changes between leading and trailing leg in the elderly may cause a redistribution of the mechanical load at the tibiofemoral joint, affecting the initiation and progression of knee osteoarthritis in the elderly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号