首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytanic acid and pristanic acid are branched-chain fatty acids, present at micromolar concentrations in the plasma of healthy individuals. Here we show that both phytanic acid and pristanic acid activate the peroxisome proliferator-activated receptor alpha (PPARalpha) in a concentration-dependent manner. Activation is observed via the ligand-binding domain of PPARalpha as well as via a PPAR response element (PPRE). Via the PPRE significant induction is found with both phytanic acid and pristanic acid at concentrations of 3 and 1 microM, respectively. The trans-activation of PPARdelta and PPARgamma by these two ligands is negligible. Besides PPARalpha, phytanic acid also trans-activates all three retinoic X receptor subtypes in a concentration-dependent manner. In primary human fibroblasts, deficient in phytanic acid alpha-oxidation, trans-activation through PPARalpha by phytanic acid is observed. This clearly demonstrates that phytanic acid itself, and not only its metabolite, pristanic acid, is a true physiological ligand for PPARalpha. Because induction of PPARalpha occurs at ligand concentrations comparable to the levels found for phytanic acid and pristanic acid in human plasma, these fatty acids should be seen as naturally occurring ligands for PPARalpha.These results demonstrate that both pristanic acid and phytanic acid are naturally occurring ligands for PPARalpha, which are present at physiological concentrations.  相似文献   

2.
Phytanic acid is a methyl-branched fatty acid present in the human diet. Due to its structure, degradation by β-oxidation is impossible. Instead, phytanic acid is oxidized by -oxidation, yielding pristanic acid. Despite many efforts to elucidate the -oxidation pathway, it remained unknown for more than 30 years. In recent years, the mechanism of -oxidation as well as the enzymes involved in the process have been elucidated. The process was found to involve activation, followed by hydroxylase, lyase and dehydrogenase reactions. Part, if not all of the reactions were found to take place in peroxisomes. The final product of phytanic acid -oxidation is pristanic acid. This fatty acid is degraded by peroxisomal β-oxidation. After 3 steps of β-oxidation in the peroxisome, the product is esterified to carnitine and shuttled to the mitochondrion for further oxidation. Several inborn errors with one or more deficiencies in the phytanic acid and pristanic degradation have been described. The clinical expressions of these disorders are heterogeneus, and vary between severe neonatal and often fatal symptoms and milder syndromes with late onset. Biochemically, these disorders are characterized by accumulation of phytanic and/or pristanic acid in tissues and body fluids. Several of the inborn errors involoving phytanic acid and/or pristanic acid metabolism have been characterized on the molecular level.  相似文献   

3.
A common feature of most peroxisomal disorders is the accumulation of very-long-chain fatty acids (VLCFAs) and/or pristanic and phytanic acid in plasma. Previously described methods utilizing either gas chromatography alone or gas chromatography–mass spectrometry are, in general, time-consuming and unable to analyze VLCFAs, pristanic and phytanic acid within a single analysis. We describe a simple, reproducible and rapid method using gas chromatography/mass spectrometry with deuterated internal standards. The method was evaluated by analysing 30 control samples and samples from 35 patients with defined peroxisomal disorders and showed good discrimination between controls and patients. This method is suitable for routine screening for peroxisomal disorders.  相似文献   

4.
We studied the oxidation of [1-14C]phytanic acid, 3-methyl substituted fatty acid, to pristanic acid and 14CO2 in human skin fibroblasts. The specific activity for alpha-oxidation of phytanic acid in peroxisomes was 29- and 124-fold higher than mitochondria and endoplasmic reticulum. This finding demonstrates for the first time the presence of fatty acid alpha-oxidation enzyme system in peroxisomes.  相似文献   

5.
Mammalian metabolism of some lipids including 3-methyl and 2-methyl branched-chain fatty acids occurs within peroxisomes. Such lipids, including phytanic and pristanic acids, are commonly found within the human diet and may be derived from chlorophyll in plant extracts. Due to the presence of a methyl group at its beta-carbon, the well-characterised beta-oxidation pathway cannot degrade phytanic acid. Instead its alpha-methylene group is oxidatively excised to give pristanic acid, which can be metabolised by the beta-oxidation pathway. Many defects in the alpha-oxidation pathway result in an accumulation of phytanic acid, leading to neurological distress, deterioration of vision, deafness, loss of coordination and eventual death. Details of the alpha-oxidation pathway have only recently been elucidated, and considerable progress has been made in understanding the detailed enzymology of one of the oxidative steps within this pathway. This review summarises these recent advances and considers the roles and likely mechanisms of the enzymes within the alpha-oxidation pathway.  相似文献   

6.
A sensitive and selective stable isotope dilution method was developed for the accurate quantitation of pristanic acid and phytanic acid using electron capture negative ion mass fragmentography on pentafluorobenzyl derivatives. This technique allows detection of 1 pg of each compound and was applied to plasma from healthy controls and patients suffering from various peroxisomal disorders. The age-dependency of phytanic and pristanic acid levels in plasma from healthy controls was demonstrated. The involvement of peroxisomes in the beta-oxidation of pristanic acid was concluded from its accumulation in plasma from patients with peroxisomal deficiencies. Pristanic acid/phytanic acid ratios were markedly increased in bifunctional protein and/or 3-oxoacyl-CoA thiolase deficiency, indicating their role in the (differential) diagnosis of disorders of peroxisomal beta-oxidation.  相似文献   

7.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), an unusual branched chain fatty acid thought to disrupt the hydrophobic regions of membranes, can be incorporated into the lipids of growing Neurospora cultures. The phytanic acid must be supplied in a water soluble form, esterified to a Tween detergent (Tween-Phytanic). This fatty acid and its oxidation product, pristanic acid, were found in both the phospholipid and neutral lipid fractions of Neurospora. In phospholipids of the wild-type strain, phytanic acid was present to the extent of 4 to 5 moles percent of the fatty acids and pristanic acid, about 41 moles percent. The neutral lipids contained 42 and 4 moles percent of phytanic and pristanic acids respectively. By employing a fatty acid-requiring mutant strain (cel?), the phytanic acid level was raised to a maximum of 16 moles percent in the phospholipids and to 63 moles percent in the neutral lipids. Under this condition, the level of pristanic acid was reduced to about 6 moles percent in phospholipids and 1 mole percent in the neutral lipids. The phytanic acid levels could not be further elevated by increased supplementation with phytanic acid or by a change in the growth temperature. In strains with a high phytanic acid content, the complete fatty acid distribution of the phospholipids and neutral lipids was determined. In the neutral lipids, phytanic acid appeared to replace the 18 carbon fatty acids, particularly linoleic acid. The presence of phytanic acid in the phospholipids was confirmed by mass spectrometry, and by the isolation of a phospholipid fraction containing this fatty acid via silicic acid column chromatography. Most of the phytanic acid in phospholipids appeared to be in phosphatidylethanolamine, and 2 lines of evidence suggest that it was esterified to both positions of this molecule. In the fatty acid-requiring mutant strain (cel?), the replacement by phytanic acid of 10 to 15% of the fatty acids in the phospholipid produced an aberrant morphological change in the growth pattern of Neurospora and caused this organism to be osmotically more fragile than the wild-type strain. The lack of noticeable effect of the high levels of pristanic acid in the phospholipids suggests that it is not just the presence of the methyl groups in a branched chain fatty acid which leads to the altered membrane function in this organism.  相似文献   

8.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

9.
A stable isotope dilution method was developed for the measurement of 2-hydroxyphytanic acid and 2-oxophytanic acid in plasma. In plasma from healthy individuals and from patients with Refsum's disease, 2-hydroxyphytanic acid was found at levels less than 0.2 mumol/l, whereas the acid accumulated in plasma from patients with rhizomelic chondrodysplasia punctata, generalized peroxisomal dysfunction, and a single peroxisomal beta-oxidation enzyme deficiency. In plasma from both healthy controls and patients with peroxisomal disorders, 2-oxophytanic acid was undetectable. Four different groups of diseases were characterized with a defective phytanic acid alpha-oxidation and/or pristanic acid beta-oxidation: 1) Refsum's disease, with a defect at phytanic acid alpha-hydroxylation; 2) rhizomelic chondrodysplasia punctata, with a defect at 2-hydroxyphytanic acid decarboxylation; 3) generalized peroxisomal disorders, with defects at 2-hydroxyphytanic acid decarboxylation and at pristanic acid beta-oxidation; 4) single peroxisomal beta-oxidation enzyme deficiencies, with a defect at pristanic acid beta-oxidation, resulting in an impaired phytanic acid alpha-oxidation by inhibition. The results indicate that 2-hydroxyphytanic acid decarboxylation and pristanic acid beta-oxidation take place in peroxisomes.  相似文献   

10.
We studied the oxidation of [1-14C]phytanic acid, 3-methyl substituted fatty acid, to pristanic acid and 14CO2 in human skin fibroblasts. The specific activity for α-oxidation of phytanic acid in peroxisomes was 29- and 124-fold higher than mitochondria and endoplasmic reticulum. This finding demonstrates for the first time the presence of fatty acid α-oxidation enzyme system in peroxisomes.  相似文献   

11.
Branched-chain fatty acids (such as phytanic and pristanic acid) are ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in vitro. To investigate the effects of these physiological compounds in vivo, wild-type and PPARalpha-deficient (PPARalpha-/-) mice were fed a phytol-enriched diet. This resulted in increased plasma and liver levels of the phytol metabolites phytanic and pristanic acid. In wild-type mice, plasma fatty acid levels decreased after phytol feeding, whereas in PPARalpha-/- mice, the already elevated fatty acid levels increased. In addition, PPARalpha-/- mice were found to be carnitine deficient in both plasma and liver. Dietary phytol increased liver free carnitine in wild-type animals but not in PPARalpha-/- mice. Investigation of carnitine biosynthesis revealed that PPARalpha is likely involved in the regulation of carnitine homeostasis. Furthermore, phytol feeding resulted in a PPARalpha-dependent induction of various peroxisomal and mitochondrial beta-oxidation enzymes. In addition, a PPARalpha-independent induction of catalase, phytanoyl-CoA hydroxylase, carnitine octanoyltransferase, peroxisomal 3-ketoacyl-CoA thiolase, and straight-chain acyl-CoA oxidase was observed. In conclusion, branched-chain fatty acids are physiologically relevant ligands of PPARalpha in mice. These findings are especially relevant for disorders in which branched-chain fatty acids accumulate, such as Refsum disease and peroxisome biogenesis disorders.  相似文献   

12.
13.
High pressure liquid chromatography with a narrow bore C8 column has been used to separate pristanic, phytanic and very long chain fatty acids, important in the diagnosis of peroxisomal disorders, for their accurate isotope dilution quantification by tandem mass spectrometry. The fatty acids, isolated from plasma, were analysed as trimethylaminoethyl ester (quaternary ammonium) derivatives. Analysis time was 2.5 h and sample requirement was 10 microl of plasma. Good agreement with GC-MS methods for the levels of pristanic and phytanic acids, C26:0/C22:0 and C24:0/C22:0 ratios were obtained for 12 plasma samples from peroxisomal disorder patients and a set of controls.  相似文献   

14.
Very-long-chain acyl-CoA synthetases (VLCS) activate very-long-chain fatty acids (VLCFA) containing 22 or more carbons to their CoA derivatives. We cloned the human ortholog (hVLCS) of the gene encoding the rat liver enzyme (rVLCS). Both hVLCS and rVLCS contain 620 amino acids, are expressed primarily in liver and kidney, and have a potential peroxisome targeting signal 1 (-LKL) at their carboxy termini. When expressed in COS-1 cells, hVLCS activated the VLCFA lignoceric acid (C24:0), a long-chain fatty acid (C16:0), and two branched-chain fatty acids, phytanic acid and pristanic acid. Immunofluorescence and immunoblot studies localized hVLCS to both peroxisomes and endoplasmic reticulum. In peroxisomes of HepG2 cells, hVLCS was topographically oriented facing the matrix and not the cytoplasm. This orientation, coupled with the observation that hVLCS activates branched-chain fatty acids, suggests that hVLCS could play a role in the intraperoxisomal reactivation of pristanic acid produced via alpha-oxidation of phytanic acid.  相似文献   

15.
Quantification of pristanic acid, phytanic acid, and very long chain fatty acids (i.e., hexacosanoic, tetracosanoic, and docosanoic acids) in plasma is the primary method for investigateing a multitude of peroxisomal disorders (PDs). Typically based on GC-MS, existing methods are time-consuming and laborious. In this paper, we present a rapid and specific liquid chromatography tandem mass spectrometric method based on derivatization with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DAABD-AE). Derivatization was undertaken to improve the poor mass spectrometric properties of these fatty acids. Analytes in plasma (20 mul) were hydrolyzed, extracted, and derivatized with DAABD-AE in approximately 2 h. Derivatives were separated on a reverse-phase column and detected by positive-ion electrospray ionization tandem mass spectrometry with a 5 min injection-to-injection time. Calibration plots were linear over ranges that cover physiological and pathological concentrations. Intraday (n = 12) and interday (n = 10) variations at low and high concentrations were less than 9.2%. Reference intervals in normal plasma (n = 250) were established for each compound and were in agreement with the literature. Using specimens from patients with established diagnosis (n = 20), various PDs were reliably detected. In conclusion, this method allows for the detection of at least nine PDs in a 5 min analytical run. Furthermore, this derivatization approach is potentially applicable to other disease markers carrying the carboxylic group.  相似文献   

16.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which, due to the methyl-group at the 3-position, can not undergo beta-oxidation unless the terminal carboxyl-group is removed by alpha-oxidation. The structure of the phytanic acid alpha-oxidation machinery in terms of the reactions involved, has been resolved in recent years and includes a series of four reactions: (1) activation of phytanic acid to phytanoyl-CoA, (2) hydroxylation of phytanoyl-CoA to 2-hydroxyphytanoyl-CoA, (3) cleavage of 2-hydroxyphytanoyl-CoA to pristanal and formyl-CoA, and (4) oxidation of pristanal to pristanic acid. The subcellular localization of the enzymes involved has remained enigmatic, with the exception of phytanoyl-CoA hydroxylase and 2-hydroxyphytanoyl-CoA lyase which are both localized in peroxisomes. The oxidation of pristanal to pristanic acid has been claimed to be catalysed by the microsomal aldehyde dehydrogenase FALDH encoded by the ALDH10-gene. Making use of mutant fibroblasts deficient in FALDH activity, we show that phytanic acid alpha-oxidation is completely normal in these cells. Furthermore, we show that pristanal dehydrogenase activity is not fully deficient in FALDH-deficient cells, implying the existence of one or more additional aldehyde dehydrogenases reacting with pristanal. Using subcellular localization studies, we now show that peroxisomes contain pristanal dehydrogenase activity which leads us to conclude that the complete phytanic acid alpha-oxidation pathway is localized in peroxisomes.  相似文献   

17.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid derived from dietary sources and broken down in the peroxisome to pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) via alpha-oxidation. Pristanic acid then undergoes beta-oxidation in peroxisomes. Phytanic acid naturally occurs as a mixture of (3S,7R,11R)- and (3R,7R,11R)-diastereomers. In contrast to the alpha-oxidation system, peroxisomal beta-oxidation is stereospecific and only accepts (2S)-isomers. Therefore, a racemase called alpha-methylacyl-CoA racemase is required to convert (2R)-pristanic acid into its (2S)-isomer. To further investigate the stereochemistry of the peroxisomal oxidation systems and their substrates, we have developed a method using gas-liquid chromatography-mass spectrometry to analyze the isomers of phytanic, pristanic, and trimethylundecanoic acid in plasma from patients with various peroxisomal fatty acid oxidation defects. In this study, we show that in plasma of patients with a peroxisomal beta-oxidation deficiency, the relative amounts of the two diastereomers of pristanic acid are almost equal, whereas in patients with a defect of alpha-methylacyl-CoA racemase, (2R)-pristanic acid is the predominant isomer. Furthermore, we show that in alpha-methylacyl-CoA racemase deficiency, not only pristanic acid accumulates, but also one of the metabolites of pristanic acid, 2610-trimethylundecanoic acid, providing direct in vivo evidence for the requirement of this racemase for the complete degradation of pristanic acid.  相似文献   

18.
2-Hydroxyacyl-CoA lyase (HACL1) is a key enzyme of the peroxisomal α-oxidation of phytanic acid. To better understand its role in health and disease, a mouse model lacking HACL1 was investigated. Under normal conditions, these mice did not display a particular phenotype. However, upon dietary administration of phytol, phytanic acid accumulated in tissues, mainly in liver and serum of KO mice. As a consequence of phytanic acid (or a metabolite) toxicity, KO mice displayed a significant weight loss, absence of abdominal white adipose tissue, enlarged and mottled liver and reduced hepatic glycogen and triglycerides. In addition, hepatic PPARα was activated. The central nervous system of the phytol-treated mice was apparently not affected. In addition, 2OH-FA did not accumulate in the central nervous system of HACL1 deficient mice, likely due to the presence in the endoplasmic reticulum of an alternate HACL1-unrelated lyase. The latter may serve as a backup system in certain tissues and account for the formation of pristanic acid in the phytol-fed KO mice. As the degradation of pristanic acid is also impaired, both phytanoyl- and pristanoyl-CoA levels are increased in liver, and the ω-oxidized metabolites are excreted in urine. In conclusion, HACL1 deficiency is not associated with a severe phenotype, but in combination with phytanic acid intake, the normal situation in man, it might present with phytanic acid elevation and resemble a Refsum like disorder.  相似文献   

19.
The relative distribution of intact diacylphosphatidylcholine species isolated from the lung lavage fluid of rabbits has been investigated by positive ion fast-atom bombardment (FAB) mass spectrometry. Two different isolation/purification methods were applied and evaluated prior to mass spectrometric analysis. The first method consisted of a Bligh and Dyer extraction of the lung lavage fluid followed by isocratic high-performance liquid chromatographic (HPLC) separation. In the second method a thin-layer chromatographic purification step was introduced between the extraction procedure and the HPLC separation. Further, the FAB matrices glycerol and 3-nitrobenzyl alcohol were used, and their influence on the diacylphosphatidylcholine molecular ion species was studied. The Bligh and Dyer extraction followed by the simple HPLC separation was the method of choice to obtain stable, long-lasting protonated molecular ions and diagnostic fragment ions, which permitted the identification of the polar head-group. In combination with 3-nitrobenzyl alcohol as liquid matrix we established a procedure that yielded a fast sample preparation method, a good signal-to-noise ratio for detecting minor species, and reduced formation of [M + H − 2H]+ ion species. The relative fatty acid composition of the diacylphosphatidylcholine fractions isolated from rabbit lung lavage fluid was determined by negative ion FAB mass spectrometry using the carboxylate anions. The mass spectrometric results were compared with those acquired by gas chromatographic determination of the fatty acid methyl esters. Close agreement was found between the data obtained by the two independent methods.  相似文献   

20.
The glucuronide and sulfate conjugates of benzene metabolites as well as muconic acid and pre-phenyl- and phenylmercapturic acids were separated by ion-pairing HPLC. The HPLC method developed was suitable for automated analysis of a large number of tissue or excreta samples. p-Nitrophenyl [14C]glucuronide was used as an internal standard for quantitation of these water-soluble metabolites. Quantitation was verified by spiking liver tissue with various amounts of phenylsulfate or glucuronides of phenol, catechol, or hydroquinone and analyzing by HPLC. Values determined by HPLC analysis were within 10% of the actual amount with which the liver was spiked. The amount of metabolite present in urine following exposure to [3H]benzene was determined using p-nitrophenyl [14C]glucuronide as an internal standard. Phenylsulfate was the major water-soluble metabolite in the urine of F344 rats exposed to 50 ppm [3H]benzene for 6 h. Muconic acid and an unknown metabolite which decomposed in acidic media to phenylmercapturic acid were also present. Liver, however, contained a different metabolic profile. Phenylsulfate, muconic acid, and pre-phenylmercapturic acids as well as an unknown with a HPLC retention time of 7 min were the major metabolites in the liver. This indicates that urinary metabolite profiles may not be a true reflection of what is seen in individual tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号