首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of sodium and potassium throughout corn (Zea mays L. [A632 × Crows 3640] × Oh 43) plants is not simply a matter of uptake by cortical cells and irreversible delivery to the xylem for upward transport. We show that sodium, but not potassium, accumulates in the mesocotyl of corn seedlings grown on NaCl medium. Upon transfer to NaCl-free medium, total sodium is reduced by export through the roots but remains at high levels within the mesocotyl. We report experiments which consider uptake from the xylem.

Shoots excised at the seed were allowed to transpire solutions containing 22Na and 42K. Potassium uptake within the mesocotyl was very sensitive to concentration, increasing 27-fold between 1 and 10 millimolar. Sodium uptake was dependent upon the square root of the concentration suggesting active accumulation. At sodium concentrations below 1 millimolar, more than 80% of the sodium in the plant was retained in the mesocotyl. Both the uptake by and retention within the mesocotyl were dependent upon transpiration rate as well as concentration. We discuss the limitations of measuring uptake from a finite, depletable medium. The mesocotyl is a modified root with a cuticularized epidermis. We discuss the feasibility of using this `plastic-coated root' as a model for root transport studies.

  相似文献   

2.
Radial salt transport in corn roots   总被引:10,自引:9,他引:1       下载免费PDF全文
Yu GH  Kramer PJ 《Plant physiology》1967,42(7):985-990
Primary roots of solution-grown, 5-day-old or 6-day-old seedlings of corn (Zea mays L.) 10 to 14 cm in length were used to study radial salt transport. Measurements were made of the volume of root pressure exudation, salt concentration of the exudate, and rate of salt movement into the xylem exudate. The 32P uptake, O2 consumption, and dehydrogenase activity of the root cortex and stele also were studied.

These roots produced copious root pressure exudate containing 4 to 10 times the concentration of 32P in the external solution. Freshly separated stele from 5-day-old roots accumulated 32P as rapidly as the cortex from which it was separated and the stele of intact roots also accumulated 32P. Separated stele has a higher oxygen uptake than cortex. It also shows strong dehydrogenase activity with the tetrazolium test. The high oxygen consumption, 32P uptake and strong dehydrogenase activity indicate that the cells of the stele probably play a direct role in salt transport.

These data raise doubts concerning theories of radial salt transport into the xylem based on the assumption that the stele is unable to accumulate salt vigorously.

  相似文献   

3.
Radial transport of ions in roots   总被引:8,自引:7,他引:1       下载免费PDF全文
Yu GH  Kramer PJ 《Plant physiology》1969,44(8):1095-1100
Measurements were made of the relative amounts of 86Rb, 36Cl, and 32P accumulated in the cortex and stele of intact roots of corn (Zea mays), either detached or attached to their shoots. Both 4- and 7-day-old roots accumulated as much or more 86Rb in the stele as in the cortex. In experiments with 36Cl, cortex and stele accumulated the same amount, except for 4-day-old and 7-day-old attached roots, in which the cortex contained more 36Cl than the stele after 23 hr. An additional study of 32P uptake showed greater accumulation in the cortex than the stele for a short period of time, but as much in the stele as in the cortex after 8 to 24 hr. Transport of 86Rb, 36Cl, and 32P into the xylem exudate increased with increasing accumulation of these ions in stele and cortex of the root. These experiments show no consistent difference between cortex and stele of intact corn roots with respect to their ability to accumulate several kinds of ions.  相似文献   

4.
Transport of the cytokinin 6-benzylaminopurine-8-14C in the root and shoot of intact Citrus aurantium L. seedlings was studied by “replacing” the 0.5 cm root tip with the uptake solution. The cytokinin was transported basipetally in the root and was distributed in an acropetal direction in the stem and into the leaves. Kinetic analysis of the transport for periods of up to 96 h revealed a characteristic advancing front of the label along the axis of the seedling. The estimated velocity of transport of 6-benzylamino-purine-8-14C in various regions of the intact root was 2.6 to 5.1 mm/h. The transport of 6-benzylaminopurine was predominantly in the transpiration stream, in stelar tissues of the root. Conditions of high transpiration favored enhanced transport to the shoot and an overall greater accumulation of the label. The total accumulation of 6-benzylaminopurine in roots of intact seedlings after 48 h of transport was 354% of that in roots of shoot-less seedlings. Root girdling and treatment of the root with KCN did not reduce the basipetal transport of the label in the root and into the shoot. Radiochromalogram scanning of root extracts and analysis of the ethanol insoluble-NaOH soluble fraction revealed considerable metabolic changes in the translocated cytokinin. Only 51% of the radioactivity remained in the original 6-benzylaminopurine peak after 24 h of incubation. Two other, unidentified, metabolites were detected. It is suggested that all the factors that affect the ascent of sap are involved in the long-distance transport of cytokinins, and that the rate and mode of transport of cytokinins from the root system to the shoot may be a major factor in the expression of their physiological activity.  相似文献   

5.
The effect of Ca on the polar movement of [3H]indoleacetic acid ([3H] IAA) in gravistimulated roots was examined using 3-day-old seedlings of maize (Zea mays L.). Transport of label was measured by placing an agar donor block containing [3H]IAA on one side of the elongation zone and measuring movement of label across the root into an agar receiver block on the opposite side. In vertically oriented roots, movement of label across the elongation zone into the receiver was slight and was not enhanced by incorporating 10 millimolar CaCl2 into the receiver block. In horizontally oriented roots, movement of label across the root was readily detectable and movement to a receiver on the bottom was about 3-fold greater than movement in the opposite direction. This polarity was abolished in roots from which the caps were removed prior to gravistimulation. When CaCl2 was incorporated into the receivers, movement of label across horizontally oriented intact roots was increased about 3-fold in both the downward and upward direction. The ability of Ca to enhance the movement of label from [3H]IAA increased with increasing Ca concentration in the receiver up to 5 to 10 millimolar CaCl2. With the inclusion of CaCl2 in the receiver blocks, gravity-induced polar movement of label into receiver blocks from applied [3H]IAA was detectable within 30 minutes, and asymmetric distribution of label within the tissue was detectable within 20 minutes. The results indicate that gravistimulation induces a physiological asymmetry in the auxin transport system of maize roots and that Ca increases the total transport of auxin across the root.  相似文献   

6.
Intercellular localization of nitrate reductase in roots   总被引:17,自引:8,他引:9       下载免费PDF全文
Experiments were conducted with segments of corn roots to investigate whether nitrate reductase (NR) is compartmentalized in particular groups of cells that collectively form the root symplastic pathway. A microsurgical technique was used to separate cells of the epidermis, of the cortex, and of the stele. The presence of NR was determined using in vitro and enzyme-linked immunosorbent assays. In roots exposed to 0.2 millimolar NO3 for 20 hours, NR was detected almost exclusively in epidermal cells, even though substantial amounts of NO3 likely were being transported through cortical and steler cells during transit to the vascular system. Although NR was present in all cell groups of roots exposed to 20.0 millimolar NO3, the majority of the NR still was contained in epidermal cells. The results are consistent with previous observations indicating that limited reduction of endogenous NO3 occurs during uptake and reduction of exogenous NO3. Several mechanisms are advanced to account for the restricted capacity of cortical and stelar cells to induce NR and reduce NO3. It is postulated that (a) the biochemical system involved in the induction of NR in the cortex and stele is relatively insensitive to the presence of NO3, (b) the receptor for the NR induction response and the NR protein are associated with cell plasmalemmae and little NO3 is taken up by cells of the cortex and stele, and/or (c) NO3 is compartmentalized during transport through the symplasm, which limits exposure for induction of NR and NO3 reduction.  相似文献   

7.
Recent studies have provided evidence of a large flux of root-respired CO2 in the transpiration stream of trees. In our study, we investigated the potential impact of this internal CO2 transport on aboveground carbon assimilation and CO2 efflux. To trace the transport of root-respired CO2, we infused a 13C label at the stem base of field-grown Populus deltoides Bartr. ex. Marsh trees. The 13C label was transported to the top of the stem and throughout the crown via the transpiration stream. Up to 17% of the 13C label was assimilated by chlorophyll-containing tissues. Our results provide evidence of a mechanism for recycling respired CO2 within trees. Such a mechanism may have important implications for how plants cope with predicted increases in intensity and frequency of droughts. Here, we speculate on the potential significance of this recycling mechanism within the context of plant responses to climate change and plants currently inhabiting arid environments.  相似文献   

8.
Transport of aluminum and gallium from blood into rat tissues following continuous iv infusion of metals in different chemical forms has been investigated. Tissue uptake of aluminum and gallium was similar and highly dependent on the chemical species of the metals. Aluminum and gallium accumulated in liver and spleen when infused in the chloride form. Raised citrate markedly enhanced aluminum and gallium uptake into renal cortex and bone; in contrast with gallium-transferrin, citrate increased uptake of67Ga into renal cortex and bone by 8- and 14-fold respectively. Uptake of67Ga with citrate into renal cortex was around 3 times smaller than that of aluminum. The antitransferrin receptor antibody OX-26 enhanced67Ga uptake from gallium citrate into all rat tissues.67Ga from purified gallium-transferrin was also taken into all tissues in the presence of OX-26, the effect being greatest in renal cortex and bone. No influence of antibody on aluminum transport into rat tissues was, however, observed when aluminum was infused in the citrate form. Therefore, transport of aluminum and gallium into tissues is not similar under all conditions. Transport of each metal occurs into all tissues in the presence of antitransferrin receptor antibody. The potential for such transport is much greater in the case of gallium. Transport of aluminum and gallium citrate complexes appears important especially in the renal cortex and bone.  相似文献   

9.
The specificity and regulation of putrescine transport was investigated in roots of intact maize (Zea mays L.) seedlings. In concentration-dependent transport studies, the kinetics for putrescine uptake could be resolved into a single saturable component that was noncompetitively inhibited by increasing concentrations of Ca2+ (50 micromolar to 5 millimolar). Similarly, other polyvalent cations, including Mg2+ (1.8 millimolar) and La3+ (200 micromolar), almost completely abolished the saturable component for putrescine uptake. This suggests that putrescine does not share a common transport system with other divalent or polyvalent inorganic cations. Further characterization of the putrescine transport system indicated that 0.3 millimolar N-ethyl-maleimide had no effect on putrescine uptake, and 2 millimolar p-chloromercuribenzene sulfonic acid only partially inhibited transport of the diamine (39% inhibition). Metabolic inhibitors, including carbonylcyanide-m-chlorphenylhydrazone (20 micromolar) and KCN (0.5 millimolar), also partially inhibited the saturable component for putrescine uptake (Vmax reduced 48-60%). Increasing the time of exposure to carbonylcyanide-m-chlorphenylhydrazone from 30 minutes to 2 hours did not significantly increase the inhibition of putrescine uptake. Electrophysiological evidence indicates that the inhibitory effect on putrescine uptake by these inhibitors is correlated to a depolarization of the membrane potential, suggesting that the driving force for putrescine uptake is the transmembrane electrical potential across the plasmalemma.  相似文献   

10.
Addition of polyethylene glycol (PEG) as an osmotic agent (at −230 kilopascals) dramatically lessened the toxicity of NaCl (at 50 moles per cubic meter) to rice (Oryza sativa L.) seedlings. This was explained by a reduction in the uptake of NaCl. This reduction was much greater than could be accounted for by the lowered transpiration rate resulting from the solute potential changes due to the PEG.

Low concentrations of PEG (−33 kilopascals and less) had no effect upon transpiration rate but reduced sodium uptake (from 10-50 moles per cubic meter NaCl) by up to 80%. PEG (at −33 kilopascals) also reduced chloride uptake but had no effect upon the uptake of potassium from low (0.5-2.0 moles per cubic meter) external concentrations. However, the increased uptake of potassium occurring between 2 and 10 moles per cubic meter external concentration was abolished by PEG. Similar concentrations of mannitol had no effect upon sodium uptake in rice. PEG, in similar conditions, had much less effect upon sodium uptake by the more salt-resistant species, barley.

22Na studies showed that PEG reduced the transport of sodium from root to shoot, but had a long half time for maximal effect (several days).

14C-labeled PEG was shown to bind to microsomal membranes isolated from rice roots; it is suggested that this is due to multipoint attachment of the complex ions of PEG which exist in aqueous solutions. It is argued that this reduces passive membrane permeability, which accounts for the large effect of PEG on sodium influx in rice and the different effects on sodium influx and (carrier-dependent) potassium influx.

  相似文献   

11.
Refixation of xylem sap CO2 in Populus deltoides   总被引:1,自引:0,他引:1  
Vascular plants have respiring tissues which are perfused by the transpiration stream, allowing solubilization of respiratory CO2 in the xylem sap. The transpiration stream could provide a conduit for the internal delivery of respiratory CO2 to leaves. Trees have large amounts of respiring tissues in the root systems and stems, and may have elevated levels of CO2 in the xylem sap which could be delivered to and refixed by the leaves. Xylem sap from the shoots of three Populus deltoides trees had mean dissolved inorganic carbon concentrations (CO2+H2CO3+HCO?3) ranging from 0. 5 to 0. 9 mM. When excised leaves were allowed to transpire 1 mM[14C]NaHCO3, 99. 6% of the label was fixed in the light. Seventy-seven percent of the label was fixed in major veins and the remainder was fixed in the minor veins. Autoradiography confirmed that label was confined to the vasculature. In the dark, approximately 80% of the transpired label escaped the leaf, the remainder was fixed in the major veins, slightly elevating dark respiration measurements. This indicates that the vascular tissue in P. deltoides leaves is supplied with a carbon source distinct from the atmospheric source fixed by interveinal lamina. However, the contribution of CO2 delivered to the leaves in the transpiration stream and fixed in the veins was only 0. 5% of atmospheric CO2 uptake. In the light 90% of the label was found in sugar, starch and protein, a pattern similar to that found for atmospheric uptake of[14C]CO2. Compared with leaves labelled in the light, leaves labelled in the dark had more label in organic acid, amino acid and protein and less label in sugar and starch. After a 5-s pulse the majority of the label fed to petioles in both the light and the dark was found in malate. The majority of the label was found in malate at 120 s in the dark; only 2% of the label was found in phosphorylated compounds at 120 s. The proportion of label found in phosphorylated compounds increased from 17% at 5 s to 80% at 120 s in the light. This suggests that CO2 delivered to leaves in the light via the transpiration stream is fixed in the veins, a small portion through dark fixation into malate, the remainder by C-3 photosynthesis.  相似文献   

12.
The plasma membrane fractions from separated cortex and stele of primary roots of corn (Zea mays L. WF9 × M14) contained cation ATPase activity at similar levels but with somewhat different properties. ATPase activity from cortex was optimum at pH 6.5, showed a simple Michaelis-Menten saturation with increasing ATP·Mg, and showed complex kinetic data for K+ stimulation similar in character to the kinetic data for K+-ATPase and K+ influx in primary roots. The results for cortex indicate that homogenates of primary roots are dominated by membranes from cortical cells.

ATPase activity from stele was optimum at pH 6.5 and showed another maximum at pH 9. At pH 6.5, activity from stele had properties similar to that from cortex except that the kinetics of K+ stimulation closely approached that expected for a Michaelis-Menten enzyme. At pH 9, the enzyme activity from stele was inhibited by 5 μg/ml oligomycin, suggesting that a significant portion of the activity was of mitochondrial origin. Sucrose density gradient analysis indicated some contamination of mitochondrial membranes in the plasma membrane fraction from stele. The results for stele are consistent with the view that stelar parenchyma cells are not deficient in ion pumps.

  相似文献   

13.
The transport and metabolism of indole-3-acetic acid (IAA) was studied in etiolated lupin (Lupinus albus L, cv. Multolupa) hypocotyls, following application of dual-isotope-labelled indole-3-acetic acid, [5-3H]IAA plus [1-14C]IAA, to decapitated plants. To study the radial distribution of the transported and metabolized IAA, experiments were carried out with plants in which the stele was separated from the cortex by a glass capillary. After local application of labelled IAA to the cortex, radioactivity remained immobilized in the cortex, near the application point, showing that polar transport cannot occur in the outer tissues. However, following application of IAA to the stele, radioactivity appeared in the cortex in those hypocotyl sections below the first 1 cm (in which the capillary was inserted), and the basipetal IAA movement was similar to that observed after application of IAA to the complete cut surface. In both assays, longitudinal distribution of 14C and 3H in the stele outside the first 1 cm was positively correlated with that of cortex, indicating that there was a lateral migration of IAA from the transport pathway (in the stele) to the outer tissues and that this migration depended on the amount of IAA in the stele. Both tissues (stele and cortex) exhibited intensive IAA metabolism, decarboxylation being higher in the stele than in the cortex while IAA conjugation was the opposite. Decapitation of the seedlings caused a drastic reduction of hypocotyl growth in the 24 h following decapitation, unless the hypocotyls were treated apically with IAA. Thus, exogenous IAA, polarly transported, was able to substitute the endogenous source of auxin (cotyledons plus meristem) to permit hypocotyl growth. It is proposed that IAA escapes from the transporting cells (in the stele) to the outer tissues in order to reach the growth-responsive cells. The IAA metabolism in the outer tissues could generate the IAA gradient necessary for the maintenance of its lateral flow, and consequently the auxin-induced cell elongation.  相似文献   

14.
The relative transport capabilities of the cells of the root periphery and cortex were investigated using a variety of experimental techniques. Brief (30 seconds to 1 minute) exposures with the penetrating sulfhydryl reagent, N-ethyl maleimide (NEM), and the impermeant reagent, p-chloromercuribenzene sulfonic acid (PCMBS), dramatically reduced 86Rb+ (0.2 millimolar RbCl) uptake into 2 centimeter corn (Zea mays [A632 × (C3640 × Oh43)]) root segments. Autoradiographic localization studies with [3H]NEM and [203Hg]PCMBS demonstrated that, during short term exposures with either reagent, sulfhydryl binding occurred almost exclusively in the cells of the root periphery.

Corn root cortical protoplasts were isolated, and exhibited significant K+(86Rb+) influx. The kinetics for K+ uptake were studied; the influx isotherms were smooth, nonsaturating curves that approached linearity at higher K+(Rb+) concentrations (above 1 millimolar K+). These kinetics were identical in shape to the complex kinetics previously observed for K+ uptake in corn roots (Kochian, Lucas 1982 Plant Physiol 70: 1723-1731), and could be resolved into a saturable and a first order kinetic component.

The existence of a hypodermal apoplastic barrier was investigated. The apoplastic, cell wall binding dye, Calcofluor White M2R, appeared to be excluded from the cortex by the hypodermis. However, experiments with damaged roots indicated that this result may be an artifact resulting from the binding of dye to the epidermal cell walls. Furthermore, [203Hg] PCMBS autoradiography demonstrated that the hypodermis was not a barrier to apoplastic movement of PCMBS.

These results suggest that although cortical cells possess the capacity to absorb ions, K+ influx at low concentrations is limited to the root periphery. Cortical cell uptake appears to be repressed under these conditions. At higher concentrations, cortical cells may function to absorb K+. Such a model may involve regulation of cortical cell ion transport capacity.

  相似文献   

15.
H Uptake and Extrusion by Nitella clavata   总被引:1,自引:1,他引:0       下载免费PDF全文
Holland DJ  Barr CE 《Plant physiology》1982,70(4):1135-1142
Very high rates of H+ extrusion by internodal cells of Nitella clavata Kutz were measured after acid loading at pH 4.6. The highest rate observed, 160 picomoles per square centimeter per second, was more than twice the rate of photosynthetic bicarbonate utilization under saturating light. These results are consistent with the recently proposed hypothesis that bicarbonate is not taken in directly but is protonated at the exterior surface; the CO2 thereby formed diffuses preferentially into the cell because of the asymmetric concentration gradient.

The H+ taken up, about 150 nanomoles per square centimeter in 2 hours, was distributed in three fractions: 30% in the cell wall, 40% in the cytoplasm, and 30% in the vacuole. This was concluded from the kinetics of the H+ release by intact cells and isolated walls, and from the pH decrease of the vacuolar sap.

The cytoplasmic H+ was extruded rapidly, with a half-time of about 2 minutes when the external pH was 5.7 or higher. The extrusion of the vacuolar H+ only proceeded at a measurable rate when the [K+] in the medium was raised to 20 millimolar; the half-time was about 100 minutes. There was little H+ extruded when the external pH was 5.0.

  相似文献   

16.
The uptake of IAA into excised mesocotyls of non-irradiated maize seedlings was linear up to a concentration of about 4×M and in this range there was a tight coupling between the IAA in the stele and the cortex. Prior irradiation with white light of intact seedlings unbalanced this coupling. Lateral and longitudinal transport were affected differently. In the stele, the effect of prior irradiation on longitudinal transport was multiphasic, with an initial stimulatory effect followed by a negative effect at longer prior irradiation times. The lateral transport from the stele to the cortex showed no stimulatory effect and appeared to be inhibited within at least 15 min. The effect of the prior irradiation on longitudinal transport in the stele appeared to be a high intensity effect. In contrast, the effect of the prior irradiation on the lateral transport from the stele to the cortex was saturated at much lower intensities. The data suggest that the light induced change in the lateral transport of IAA between the two tissues may be due to changes either in the number of open lateral transport channels/carriers or in the conductivity of these channels/carriers.  相似文献   

17.
Induction of corn (Zea mays L.) seedling root membrane polypeptides was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis in relation to induction of nitrate uptake. When nitrate uptake was studied using freshly harvested roots from 4-day old corn seedlings, a steady state rate of uptake was achieved after a lag of 2 to 3 hours. The plasma membrane fraction from freshly harvested roots (uninduced) and roots pretreated in 5 millimolar nitrate for 2.5 or 5 hours (induced) showed no differences in the major polypeptides with Coomassie blue staining. Autoradiography of the 35S-methionine labeled proteins, however, showed four polypeptides with approximate molecular masses of 165, 95, 70, and 40 kilodaltons as being induced by both 2.5 and 5-hour pretreatment in 5 millimolar nitrate. All four polypeptides appeared to be integral membrane proteins as shown by Triton X-114 (octylphenoxypolyethoxyethanol) washing of the membrane vesicles. Autoradiography of the two-dimensional gels revealed that several additional low molecular weight proteins were induced. A 5-hour pretreatment in 5 millimolar chloride also induced several of the low molecular weight polypeptides, although a polypeptide of about 30 kilodaltons and a group of polypeptides around 40 kilodaltons appeared to be specifically induced by nitrate. The results are discussed in relation to the possibility that some of the polypeptides induced by nitrate treatment may be directly involved in nitrate transport through the plasma membrane.  相似文献   

18.
Guy M  Reinhold L 《Plant physiology》1978,61(4):593-596
A method has been developed for observing membrane transport in isolated protoplasts. Transport of sugars and amino acids has been studied in protoplasts isolated from the mesophyll of Pisum sativum L. That uptake was not due to passive diffusion through damaged membranes was demonstrated by supplying simultaneously two sugar stereoisomers, the one 3H-labeled and the other 14C-labeled. The protoplast membranes were sufficiently functional to discriminate strongly between these stereoisomers.

To characterize transport the nonmetabolized glucose analogue 3-O-methyl glucose (MeG) and amino acid analogue α-aminoisobutyric acid (AIB) were employed. When uptake was compared per unit of protein as between leaf strips and protoplasts prepared from the same tissue, it was estimated that the protoplasts had retained approximately 40 to 50% of the uptake ability of the whole cells. Uptake of neither MeG nor AIB by protoplasts was linear with time, but the tendency to flatten was more marked for AIB. Addition of Mg-ATP to buffered medium significantly promoted AIB uptake, an effect not ascribable to either chelation or pH. Transport of both MeG and AIB was markedly pH-dependent, uptake falling with rise in pH.

The stimulatory effect of Mg-ATP and the pH dependence confirm that uptake was not due to a diffusional inward “leak” but involved membrane function.

This work demonstrates the feasibility of using isolated protoplasts for membrane transport studies. The potential advantages of using protoplasts for such studies are pointed out.

  相似文献   

19.
An investigation has been carried out to find out in what compounds carbon is radially transported from stele to the cortex and to study sucrose metabolism in the root. These tissues were fed with14C-sucrose either directly or through the mesocotyle. In the latter case, the bulk of radioactivity, both in the stele and cortex, was concentrated in sucrose rather than in mono saccharides. This corresponds to the radial transport of carbon from stele to cortex predominantly in the form of sucrose. In the case of a direct exposure of stele and cortex,14C-sucrose was utilized for respiration, amino acid biosynthesis, and accumulation of carbon in the form of glucose. The hydrolysis of sucrose to the monosaccharides and subsequent utilization of the latter in respiration was more intensive in the stele. In the cortex, the sucrose carbon was more actively used for amino acid synthesis, owing to a high concentration of nitrate reductase, glutamate dehydrogenase and glutamine synthetase. It was concluded that the cortex is the main issue zone providing nitrogen assimilation in the root.  相似文献   

20.
Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild‐type Arabidopsis thaliana and in T‐DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T‐DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+‐starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+‐sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号