首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The genome of serotype M28 group A Streptococcus (GAS) strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2) that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs).  相似文献   

2.
The only inhibitor of human salivary α-amylase identified so far in Hordeum has been isolated from barley cv. Bomi endosperm. This protein has the same N-terminal sequence (23 residues), molecular mass, and isoelectric point as one of the subunits of the barley tetrameric inhibitor previously characterized. However, enzymatic cleavage of both proteins with endoproteinase Glu-C revealed that they are products of different genes. The two isoforms have diverged in their aggregative and inhibitory properties. Thus, the subunit previously characterized forms, along with two other subunits, a tetramer active towards insect but not human salivary α-amylase, while the isoform reported here behaves as a homodimer effective against the human enzyme. These results are discussed in the context of the evolution of the cereal α-amylase inhibitor family.  相似文献   

3.
The only inhibitor of human salivary α-amylase identified so far in Hordeum has been isolated from barley cv. Bomi endosperm. This protein has the same N-terminal sequence (23 residues), molecular mass, and isoelectric point as one of the subunits of the barley tetrameric inhibitor previously characterized. However, enzymatic cleavage of both proteins with endoproteinase Glu-C revealed that they are products of different genes. The two isoforms have diverged in their aggregative and inhibitory properties. Thus, the subunit previously characterized forms, along with two other subunits, a tetramer active towards insect but not human salivary α-amylase, while the isoform reported here behaves as a homodimer effective against the human enzyme. These results are discussed in the context of the evolution of the cereal α-amylase inhibitor family.  相似文献   

4.
5.
Group A Streptococcus (GAS) is an important human pathogen that causes many types of infections, including pharyngitis and severe invasive diseases. We recently sequenced the genome of a serotype M3 strain and identified a prophage-encoded secreted phospholipase A(2) designated SlaA. To study SlaA structure-activity relationships, 20 site-specific mutants were constructed by alanine-replacement mutagenesis and purified to apparent homogeneity. Enzymatic activity was greatly reduced by alanine replacement of amino acid residues previously described as crucial in the catalytic mechanism of secreted phospholipase A(2). Similarly, substitution of five residues in an inferred Ca(2+)-binding loop and three residues in the inferred active site region resulted in loss of activity of 76.5% or greater relative to the wild-type enzyme. Analysis of enzyme substrate specificity confirmed SlaA as a phospholipase A(2), with activity against multiple phospholipid head groups and acyl chains located at the sn-2 position. PCR analysis of 1,189 GAS strains representing 48 M protein serotypes commonly causing human infections identified the slaA gene in 129 strains of nine serotypes (M1, M2, M3, M4, M6, M22, M28, M75, and st3757). Expression of SlaA by strains of these serotypes was confirmed by Western immunoblot. SlaA production increased rapidly and substantially on co-culture with Detroit 562 human pharyngeal epithelial cells. Together, these data provide new information about a novel extracellular enzyme that participates in GAS-human interactions.  相似文献   

6.
Group A Streptococcus pyogenes (GAS) is an important human pathogen that frequently causes pharyngitis. GAS organisms can adhere to and invade pharyngeal epithelial cells, which are overlaid by salivary components. However, the role of salivary components in GAS adhesion to pharyngeal cells has not been reported precisely. We collected human saliva and purified various salivary components, including proline-rich protein (PRP), statherin, and amylase, and performed invasion assays. The GAS-HEp-2 association ratio (invasion/adhesion ratio) and invasion ratio of GAS were increased significantly with whole human saliva and PRP, while the anti-PRP antibody inhibited the latter. GAS strain NY-5, which lacks M and F proteins on the cell surface, was promoted to cohere with HEp-2 cells by whole human saliva and PRP. The 28-kDa protein of GAS bound to PRP and was identified as GrpE, a chaperone protein, whereas the N-terminal of GrpE was found to bind to PRP. A GrpE-deficient mutant of GAS strain B514Sm, TR-45, exhibited a reduced ability to adhere to and invade HEp-2 cells. Microscopic observations showed the GrpE was mainly expressed on the surface of the cell division site of GAS. Furthermore, GrpE-deficient mutants of GAS and Streptococcus pneumoniae showed an elongated morphology as compared with the wild type. Taken together, this is the first study to show an interaction between salivary PRP and GAS GrpE, which plays an important role in GAS infection on the pharynx, whereas the expression of GrpE on the surface of GAS helps to maintain morphology.  相似文献   

7.
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis (“strep throat”) to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.  相似文献   

8.
The action pattern of the α-amylase produced by Thermomonospora curvata is unique. Maltooligosaccharides (maltose to maltopentaose) were tested individually for their ability to induce α-amylase in this thermophilic actinomycete. Maltotetraose was the most inductive followed by maltotriose. Maltose was a good inducer of amylase production when used as sole carbon source, but had relatively little inductive capacity in the presence of either glucose or cellobiose. When cellobiose was added during exponential growth on maltose, maltose utilization and extracellular α-amylase accumulation were transiently inhibited. With maltotriose as the initial carbon source, addition of cellobiose did not inhibit the utilization of the trisaccharide; however, cellobiose, whether added during exponential growth or stationary phase, resulted in the rapid degradation of amylase when maltotriose was depleted from the medium. This inactivation did not appear to be a growth phase-induced phenomenon because stationary phase cells in the absence of cellobiose maintained their peak extracellular amylase level. This cellobiose-mediated α-amylase inactivation would be particularly important during production of the enzyme on a complex lignocellulosic substrate.  相似文献   

9.
Aspergillus oryzae strains express α-amylases abundantly, and the genome reference strain RIB40 has three α-amylase genes (amyA, amyB, and amyC). However, there is no information on the contribution ratios of individual α-amylase genes to total expression. In this study, we generated single, double, and triple disruptants of α-amylase genes by employing a strain (ΔligD) with high gene-targeting efficiency and pyrG marker recycling in A. oryzae. All the disruptants showed reduced activities of α-amylases, and the triple disruptant completely lost activity. Comparative analyses of the activities and mRNA amounts of the α-amylases suggest that the contribution of amyA to the α-amylase expression is smaller than those of amyB and amyC. The present study suggests that the ability to express a large amount of α-amylases in A. oryzae is attributed to gene duplication of genes such as amyB and amyC.  相似文献   

10.
A fragment coding for a putative extracellular α-amylase, from the genomic library of the yeast Saccharomycopsis fibuligera KZ, has been subcloned into yeast expression vector pVT100L and sequenced. The nucleotide sequence revealed an ORF of 1,485 bp coding for a 494 amino acid residues long protein with 99% identity to the α-amylase Sfamy from S. fibuligera HUT 7212. The S. fibuligera KZ α-amylase (Sfamy KZ) belongs to typical extracellular fungal α-amylases classified in the glycoside hydrolase family 13, subfamily 1, as supported also by clustering observed in the evolutionary tree. Sfamy KZ, in addition to the essential GH13 α-amylase three-domain arrangement (catalytic TIM barrel plus domains B and C), does not contain any distinct starch-binding domain. Sfamy KZ was expressed as a recombinant protein in Saccharomyces cerevisiae and purified to electrophoretic homogeneity. The enzyme had a molecular mass 53 kDa and contained about 2.5% of carbohydrate. The enzyme exhibited pH and temperature optima in the range of 5–6 and 40–50 °C, respectively. Stable adsorption of the enzyme to starch granules was not detected but a low degradation of raw starch in a concentration-dependent manner was observed.  相似文献   

11.
12.
S ummary . Heterocaryons and diploids from Aspergillus oryzae were investigated with respect to nuclear number/conidium and to conidial size. Heterocaryons usually had larger conidia and more nuclei/conidium than diploids and the haploid parent mutants. Diploids contained significantly fewer nuclei/conidium than haploids. However, they could not be distinguished from haploids by measurement of conidial size. The strains were examined for the production of α-amylase. All auxotrophic mutants produced less α-amylase than the prototrophic wild type. Heterocaryons gave yields which were intermediate between that of their parent mutants or the same as the best producing parent. Diploids which produced more α-amylase than the best producing parent strain were synthesized. The highest yield from a diploid was of the same order of magnitude as the yield from the wild type.  相似文献   

13.
Group A streptococcus (GAS) is a leading cause of severe, invasive human infections, including necrotizing fasciitis and toxic shock syndrome. An important element of the mammalian innate defense system against invasive bacterial infections such as GAS is the production of antimicrobial peptides (AMPs) such as cathelicidins. In this study, we identify a specific GAS phenotype that confers resistance to host AMPs. Allelic replacement of the dltA gene encoding d-alanine-d-alanyl carrier protein ligase in an invasive serotype M1 GAS isolate led to loss of teichoic acid d-alanylation and an increase in net negative charge on the bacterial surface. Compared to the wild-type (WT) parent strain, the GAS DeltadltA mutant exhibited increased susceptibility to AMP and lysozyme killing and to acidic pH. While phagocytic uptake of WT and DeltadltA mutants by human neutrophils was equivalent, neutrophil-mediated killing of the DeltadltA strain was greatly accelerated. Furthermore, we observed the DeltadltA mutant to be diminished in its ability to adhere to and invade cultured human pharyngeal epithelial cells, a likely proximal step in the pathogenesis of invasive infection. Thus, teichoic acid d-alanylation may contribute in multiple ways to the propensity of invasive GAS to bypass mucosal defenses and produce systemic infection.  相似文献   

14.
15.
Amylolytic activity is widely distributed in plants. In potato leaves ( Solanum tuberosum L.) the abundant amylolytic activity was found to be β-amylase (EC 3.2.1.2, a-1,4-D-glucan maltohydrolase). β-Amylase from potato leaves was purified to homogeneity for study of enzyme characteristics. The purification steps included ammonium sulphate precipitation, anion exchange chromatography, affinity chromatography and gel filtration. The end product of α-1,4-glucan degradation was maltose. The protein is a 111-kDa homo-dimer with a subunit molecular mass of 56 kDa and a pl of 5.6. The pH-optimum is 6.5 using p -nitrophenylmaltopentaoside (PNPG5) as substrate. The optimal temperature for hydrolysis is at 40°C. The enzyme is unstable at temperatures above 40°C. The Knt-value for PNPG5 is 0.73 m M and the activity is inhibited by cyclodextrins. At a concentration of 1 m M , β-cyclodextrin is a stronger inhibitor than α-cyclodextrin (68 and 20% inhibition, respectively). Branched glucans (e.g. starch and amylopectin) are superior substrates as compared to long, essentially unbranched glucans (e.g. amylose). This study of the catalytic properties of β-amylase from potato leaves indicates the importance of β-amylase as a starch degrading enzyme.  相似文献   

16.
Degradation of reserve starch in turions, perennation organs of the duckweed Spirodela polyrhiza , is induced by continuous red light (cR). Irradiation of the turions with this light results in the autophosphorylation of starch-associated glucan water dikinase (GWD). The ensuing phosphorylation of the starch by this enzyme was proposed to result in the enhanced association of starch-degrading enzymes to the starch granules and in the initiation of starch breakdown. The present results confirm that the irradiation of dark-adapted turions with cR results in phosphorylation of the starch, accompanying changes in the capacity of the granule starch to bind turion endogenous α-amylase, as well as changes in the starch degradation level. All three effects show very similar dependence on the time of irradiation, suggesting that they may be linked. The α-amylase is a plausible candidate for effecting starch breakdown initiation. However, the increased binding capacity of the starch granules for this enzyme is insufficient to account for the initiation of the starch breakdown as this capacity is already high prior to the irradiation. The decisive effect of cR irradiation on starch degradation may lie in enabling α-amylase to gain access to otherwise sequestered starch granules or in activating α-amylase bound to the granules.  相似文献   

17.
In this study, Saccharomyces cerevisiae was engineered for simultaneous saccharification and fermentation of cellulose by the overexpression of the endoglucanase D (EngD) from Clostridium cellulovorans and the β-glucosidase (Bgl1) from Saccharomycopsis fibuligera . To promote secretion of the two enzymes, the genes were fused to the secretion signal of the S. cerevisiae α mating factor gene. The recombinant developed yeast could produce ethanol through simultaneous production of sufficient extracellular endoglucanase and β-glucosidase. When direct ethanol fermentation from 20 g L−1β-glucan as a substrate was performed with our recombinant strains, the ethanol concentration reached 9.15 g L−1 after 50 h of fermentation. The conversion ratio of ethanol from β-glucan was 80.3% of the theoretical ethanol concentration produced from 20 g L−1β-glucan. In conclusion, we have demonstrated the construction of a yeast strain capable of conversion of a cellulosic substrate to ethanol, representing significant progress towards the realization of processing of cellulosic biomass in a consolidated bioprocessing configuration.  相似文献   

18.
Alpha-amylase inhibitors are widely used by the pharmaceutical and agricultural industries, such as the treatment of diabetes and obesity and insect controller. Here, we developed a colorimetric method to screen for α-amylase inhibitor producing strains or mutants with higher α-amylase inhibitor productivity. This method relies on absorbance changes at 402 nm that are due to the inhibition of α-amylase catalyzed hydrolysis of 2-Chloro-4-nitrophenyl-4-O-β-D-galactopyranosyl-maltoside by α-amylase inhibitors. The assay can be performed on a microtiter plate, making it simple and convenient. Using this method, α-amylase inhibitor producing strains and mutants with higher α-amylase inhibitor productivity can be rapidly screened. One strain, ZJB-08196, with the highest α-amylase inhibition was isolated and identified as Actinoplanes utahensis, and one mutant with higher acarbose production was obtained by screening 3,000 variants using this method.  相似文献   

19.
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection.  相似文献   

20.
Aims:  To clarify the taxonomic status of strain ZG0656 and analyse the effects of its acarviostatin products on blood glucose levels in mammalian systems.
Methods and Results:  Our program to screen for new α-amylase inhibitors led to the isolation of strain ZG0656. The polyphasic taxonomic study revealed that strain ZG0656 represents a novel variation of Streptomyces coelicoflavus , for which we propose the name S. coelicoflavus var. nankaiensis . Four chemically distinct α-amylase inhibitors, acarviostatins I03, II03, III03 and IV03, were isolated from strain ZG0656. Acarviostatins III03 and IV03 are both novel oligomers. All four acarviostatins are mixed noncompetitive porcine pancreas α-amylase inhibitors. Acarviostatin III03 is the most potent α-amylase inhibitor known to date. Moreover, in the in vitro and in vivo experiments, acarviostatins III03 showed significant inhibition of starch hydrolysis and glucose transfer to blood.
Conclusions:  Strain ZG0656 is a novel variation of S. coelicoflavus, whose products are novel effective α-amylase inhibitors. Among the products, acarviostatins III03 could significantly depress blood glucose levels in mammalian systems and be developed towards a possible therapeutic agent for diabetes.
Significance and Impact of the Study:  Acarviostatin III03 is the most potent α-amylase inhibitor known to date. The oligomer will benefit the research on the relationship between α-amylase and various inhibitors and will offer more choices in diabetes treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号