首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Extensive DNA sequence analysis of three eukaryotes, S. cerevisiae, C. elegans, and D. melanogaster, reveals two different AA/TT periodical patterns associated with the nucleosome positioning. The first pattern is the counter-phase oscillation of AA and TT dinucleotides, which has been frequently considered as the nucleosome DNA pattern. This represents the sequence rule I for chromatin structure. The second pattern is the in-phase oscillation of the AA and TT dinucleotides with the same nucleosome DNA period, 10.4 bases. This pattern apparently corresponds to curved DNA, that also participates in the nucleosome formation, and represents the sequence rule II for chromatin. The positional correlations of AA and TT dinucleotides also indicate that the nucleosomes are separated by specific linker sizes (preferably 8, 18,…bases), dictated by the steric exclusion rules. Thus, the sequence positions of the neighboring nucleosomes are correlated, and this represents the sequence rule III.  相似文献   

2.
Positional distributions of various dinucleotides in experimentally derived human nucleosome DNA sequences are analyzed. Nucleosome positioning in this species is found to depend largely on GG and CC dinucleotides periodically distributed along the nucleosome DNA sequence, with the period of 10.4 bases. The GG and CC dinucleotides oscillate counterphase, i.e., their respective preferred positions are shifted about a half-period from one another, as it was observed earlier for AA and TT dinucleotides. Other purine-purine and pyrimidine-pyrimidine dinucleotides (RR and YY) display the same periodical and counterphase pattern. The dominance of oscillating GG and CC dinucleotides in human nucleosomes and the contribution of AG(CT), GA(TC), and AA(TT) suggest a general nucleosome DNA sequence pattern - counterphase oscillation of RR and YY dinucleotides. AA and TT dinucleotides, commonly accepted as major players, are only weak contributors in the case of human nucleosomes.  相似文献   

3.
Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the characteristic decay distance of approximately 50 base pairs. The oscillations are observed as well in the distributions of other dinucleotides. However, the respective amplitudes are small, consistent with secondary effects, due to dominant periodicity of AA and TT. The observations are in accord with earlier data on the chromatin sequence periodicities and nucleosome DNA sequence patterns. The autocorrelations of AA and TT dinucleotides in yeast include also a counter-phase component. A tentative DNA sequence pattern for the yeast nucleosomes is suggested and verified by comparison of its autocorrelation plots with the respective natural autocorrelations. The nucleosome mapping guided by the pattern is in accord with experimental data on the linker length distribution in yeast.  相似文献   

4.
Abstract

Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the characteristic decay distance of approximately 50 base pairs. The oscillations are observed as well in the distributions of other dinucleotides. However, the respective amplitudes are small, consistent with secondary effects, due to dominant periodicity of AA and TT. The observations are in accord with earlier data on the chromatin sequence periodicities and nucleosome DNA sequence patterns. The autocorrelations of AA and TT dinucleotides in yeast include also a counter-phase component. A tentative DNA sequence pattern for the yeast nucleosomes is suggested and verified by comparison of its autocorrelation plots with the respective natural autocorrelations. The nucleosome mapping guided by the pattern is in accord with experimental data on the linker length distribution in yeast.  相似文献   

5.
By measuring prevailing distances between YY, YR, RR, and RY dinucleotides in the large database of the nucleosome DNA fragments from C. elegans, the consensus sequence structure of the nucleosome DNA repeat of C. elegans was reconstructed: (YYYYYRRRRR)n. An actual period was estimated to be 10.4 bases. The pattern is fully consistent with the nucleosome DNA patterns of other eukaryotes, as established earlier, and, thus, the YYYYYRRRRR repeat can be considered as consensus nucleosome DNA sequence repeat across eukaryotic species. Similar distance analysis for [A, T] dinucleotides suggested the related pattern (TTTYTARAAA)n where the TT and AA dinucleotides display rather out of phase behavior, contrary to the "AA or TT" in-phase periodicity, considered in some publications. A weak 5-base periodicity in the distribution of TA dinucleotides was detected.  相似文献   

6.
Abstract

By measuring prevailing distances between YY, YR, RR, and RY dinucleotides in the large database of the nucleosome DNA fragments from C. elegans, the consensus sequence structure of the nucleosome DNA repeat of C. elegans was reconstructed: (YYYYYRRRRR)n. An actual period was estimated to be 10.4 bases. The pattern is fully consistent with the nucleosome DNA patterns of other eukaryotes, as established earlier, and, thus, the YYYYYRRRRR repeat can be considered as consensus nucleosome DNA sequence repeat across eukaryotic species. Similar distance analysis for [A, T] dinucleotides suggested the related pattern (TTTYTARAAA)n where the TT and AA dinucleotides display rather out of phase behavior, contrary to the “AA or TT” in-phase periodicity, considered in some publications. A weak 5-base periodicity in the distribution of TA dinucleotides was detected.  相似文献   

7.
It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context.  相似文献   

8.
Evidence is provided that the nucleotide triplet con-sensus non-T(A/T)G (abbreviated to VWG) influences nucleosome positioning and nucleosome alignment into regular arrays. This triplet consensus has been recently found to exhibit a fairly strong 10 bp periodicity in human DNA, implicating it in anisotropic DNA bendability. It is demonstrated that the experimentally determined preferences for nucleosome positioning in native SV40 chromatin can, to a large extent, be pre-dicted simply by counting the occurrences of the period-10 VWG consensus. Nucleosomes tend to form in regions of the SV40 genome that contain high counts of period-10 VWG and/or avoid regions with low counts. In contrast, periodic occurrences of the dinucleotides AA/TT, implicated in the rotational positioning of DNA in nucleosomes, did not correlate with the preferred nucleosome locations in SV40 chromatin. Periodic occurrences of AA did correlate with preferred nucleosome locations in a region of SV40 DNA where VWG occurrences are low. Regular oscillations in period-10 VWG counts with a dinucleosome period were found in vertebrate DNA regions that aligned nucleosomes into regular arrays in vitro in the presence of linker histone. Escherichia coli and plasmid DNA, which fail to align nucleosomes in vitro, lacked these regular VWG oscillations.  相似文献   

9.
Alu sequences carry periodical pattern with CG dinucleotides (CpG) repeating every 31-32 bases. Similar distances are observed in distribution of DNA curvature in crystallized nucleosomes, at positions +/-1.5 and +/-4.5 periods of DNA from nucleosome DNA dyad. Since CG elements are also found to impart to nucleosomes higher stability when positioned at +/-1.5 sites, it suggests that CG dinucleotides may play a role in modulation of the nucleosome strength when the CG elements are methylated. Thus, Alu sequences may harbor special epigenetic nucleosomes with methylation-dependent regulatory functions. Nucleosome DNA sequence probe is suggested to detect locations of such regulatory nucleosomes in the sequences.  相似文献   

10.
Multiple alignment of 118 nucleosomal DNA sequences by maximizing simultaneously match of AA dinucleotides and match of TT dinucleotides results in a pattern of the dinucleotide distributions which is characteristic of the nucleosomal DNA sequences. The AA dinucleotides are found to be distributed symmetrically relative to the TT dinucleotide distribution, around the middle point of the nucleosomal DNA sequence. The distances between major peaks of the distributions are multiples of about 10.4 bases. The peaks of the TT distribution are shifted by 6 bases downstream from the peaks of the AA distribution.  相似文献   

11.

Background

The periodical occurrence of dinucleotides with a period of 10.4 bases now is undeniably a hallmark of nucleosome positioning. Whereas many eukaryotic genomes contain visible and even strong signals for periodic distribution of dinucleotides, the human genome is rather featureless in this respect. The exact sequence features in the human genome that govern the nucleosome positioning remain largely unknown.

Results

When analyzing the human genome sequence with the positional autocorrelation method, we found that only the dinucleotide CG shows the 10.4 base periodicity, which is indicative of the presence of nucleosomes. There is a high occurrence of CG dinucleotides that are either 31 (10.4 × 3) or 62 (10.4 × 6) base pairs apart from one another - a sequence bias known to be characteristic of Alu-sequences. In a similar analysis with repetitive sequences removed, peaks of repeating CG motifs can be seen at positions 10, 21 and 31, the nearest integers of multiples of 10.4.

Conclusions

Although the CG dinucleotides are dominant, other elements of the standard nucleosome positioning pattern are present in the human genome as well. The positional autocorrelation analysis of the human genome demonstrates that the CG dinucleotide is, indeed, one visible element of the human nucleosome positioning pattern, which appears both in Alu sequences and in sequences without repeats. The dominant role that CG dinucleotides play in organizing human chromatin is to indicate the involvement of human nucleosomes in tuning the regulation of gene expression and chromatin structure, which is very likely due to cytosine-methylation/-demethylation in CG dinucleotides contained in the human nucleosomes. This is further confirmed by the positions of CG-periodical nucleosomes on Alu sequences. Alu repeats appear as monomers, dimers and trimers, harboring two to six nucleosomes in a run. Considering the exceptional role CG dinucleotides play in the nucleosome positioning, we hypothesize that Alu-nucleosomes, especially, those that form tightly positioned runs, could serve as "anchors" in organizing the chromatin in human cells.  相似文献   

12.
An estimated 80% of genomic DNA in eukaryotes is packaged as nucleosomes, which, together with the remaining interstitial linker regions, generate higher order chromatin structures [1]. Nucleosome sequences isolated from diverse organisms exhibit ∼10 bp periodic variations in AA, TT and GC dinucleotide frequencies. These sequence elements generate intrinsically curved DNA and help establish the histone-DNA interface. We investigated an important unanswered question concerning the interplay between chromatin organization and genome evolution: do the DNA sequence preferences inherent to the highly conserved histone core exert detectable natural selection on genomic divergence and polymorphism? To address this hypothesis, we isolated nucleosomal DNA sequences from Drosophila melanogaster embryos and examined the underlying genomic variation within and between species. We found that divergence along the D. melanogaster lineage is periodic across nucleosome regions with base changes following preferred nucleotides, providing new evidence for systematic evolutionary forces in the generation and maintenance of nucleosome-associated dinucleotide periodicities. Further, Single Nucleotide Polymorphism (SNP) frequency spectra show striking periodicities across nucleosomal regions, paralleling divergence patterns. Preferred alleles occur at higher frequencies in natural populations, consistent with a central role for natural selection. These patterns are stronger for nucleosomes in introns than in intergenic regions, suggesting selection is stronger in transcribed regions where nucleosomes undergo more displacement, remodeling and functional modification. In addition, we observe a large-scale (∼180 bp) periodic enrichment of AA/TT dinucleotides associated with nucleosome occupancy, while GC dinucleotide frequency peaks in linker regions. Divergence and polymorphism data also support a role for natural selection in the generation and maintenance of these super-nucleosomal patterns. Our results demonstrate that nucleosome-associated sequence periodicities are under selective pressure, implying that structural interactions between nucleosomes and DNA sequence shape sequence evolution, particularly in introns.  相似文献   

13.
Dinucleosome formation is the first step in the organization of the higher order chromatin structure. With the ultimate aim of elucidating the dinucleosome structure, we constructed a library of human dinucleosome DNA. The library consists of PCR-amplifiable DNA fragments obtained by treatment of nuclei of erythroid K562 cells with micrococcal nuclease followed by extraction of DNA and adaptor ligation to the blunt-ended DNA fragments. The library was then cloned using a plasmid vector and the sequences of the clones were determined. The dominating clones containing the Alu elements were removed. A total of 1002 clones, which comprised a dinucleosome database, contained 84 and 918 clones from the clones before and after removing Alu elements, respectively. Approximately 70% of the clones were between 300 and 400 bp in size and they were distributed to various locations of all chromosomes except the Y chromosome. The clones containing A(2)N(8)A(2)N(8)A(2) or T(2)N(8)T(2)N(8)T(2) sequences were classified into three types, Type I (N shape), Type II (V shape) and Type III (M shape) according to DNA curvature plots. The locations of experimentally determined curved DNA segments matched well with the calculated ones though the clones of Types I and III showed additional curved DNA segments as revealed by the curvature plots. The distributions of complementary dinucleotides in the nucleosome DNA, at the ends of the dinucleosome DNA clones, allowed us to predict the positions of the nucleosome dyad axis, and estimate the size of the nucleosome core DNA, 125nt. The distributions of AA and TT dinucleotides, as well as other RR and YY dinucleotides, showed a periodicity with an average period of 10.4 bases, close to the values observed before. Mapping of nucleosome positions in the dinucleosome database based on the observed periodicity revealed that the nucleosomes were separated by a linker of 7.5+ approximately 10 x n nt. This indicates that the nucleosome-nucleosome orientations are, typically, halfway between parallel and antiparallel. Also an important finding is that the distributions of AA/TT and other RR/YY dinucleotides, apparently, reflect both DNA curvature and DNA bendability, cooperatively contributing to the nucleosome formation.  相似文献   

14.
Archaeal histones and the eucaryal (eucaryotic) nucleosome core histones have almost identical histone folds. Here, we show that DNA molecules selectively incorporated by rHMfB (recombinant archaeal histone B from Methanothermus fervidus) into archaeal nucleosomes from a mixture of approximately 10(14) random sequence molecules contain sequence motifs shown previously to direct eucaryal nucleosome positioning. The dinucleotides GC, AA (=TT) and TA are repeated at approximately 10 bp intervals, with the GC harmonic displaced approximately 5 bp from the AA and TA harmonics [(GCN(3)AA or TA)(n)]. AT and CG were not strongly selected, indicating that TA not equalAT and GC not equalCG in terms of facilitating archaeal nucleosome assembly. The selected molecules have affinities for rHMfB ranging from approximately 9 to 18-fold higher than the level of affinity of the starting population, and direct the positioned assembly of archaeal nucleosomes. Fourier-transform analyses have revealed that AA dinucleotides are much enriched at approximately 10. 1 bp intervals, the helical repeat of DNA wrapped around a nucleosome, in the genomes of Eucarya and the histone-containing Euryarchaeota, but not in the genomes of Bacteria and Crenarchaeota, procaryotes that do not have histones. Facilitating histone packaging of genomic DNA has apparently therefore imposed constraints on genome sequence evolution, and since archaeal histones have no structure in addition to the histone fold, these constraints must result predominantly from histone fold-DNA contacts. Based on the three-domain universal phylogeny, histones and histone-dependent genome sequence evolution most likely evolved after the bacterial-archaeal divergence but before the archaeal-eucaryal divergence, and were subsequently lost in the Crenarchaeota. However, with lateral gene transfer, the first histone fold could alternatively have evolved after the archaeal-eucaryal divergence, early in either the euryarchaeal or eucaryal lineages.  相似文献   

15.
16.
For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs – 10–11 base long sequences – and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property – alternation of runs of purine–purine (RR) and pyrimidine–pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.  相似文献   

17.
Lowary and Widom selected from random sequences those which form exceptionally stable nucleosomes, including clone 601, the current champion of strong nucleosome (SN) sequences. This unique sequence database (LW sequences) carries sequence elements which confer stability on the nucleosomes formed on the sequences, and, thus, may serve as source of information on the structure of “ideal” or close to ideal nucleosome DNA sequence. An important clue is also provided by crystallographic study of Vasudevan and coauthors on clone 601 nucleosomes. It demonstrated that YR·YR dinucleotide stacks (primarily TA·TA) follow one another at distances 10 or 11 bases or multiples thereof, such that they all are located on the interface between DNA and histone octamer. Combining this important information with alignment of the YR-containing 10-mers and 11-mers from LW sequences, the bendability matrices of the stable nucleosome DNA are derived. The matrices suggest that the periodically repeated TA (YR), RR, and YY dinucleotides are the main sequence features of the SNs. This consensus coincides with the one for recently discovered SNs with visibly periodic DNA sequences. Thus, the experimentally observed stable LW nucleosomes and SNs derived computationally appear to represent the same entity – exceptionally stable SNs.  相似文献   

18.
Cioffi A  Dalal Y  Stein A 《Biochemistry》2004,43(21):6709-6722
The role of the large amount (more than half of the genome) of noncoding DNA in higher organisms is not well understood. DNA evolved to function in the context of chromatin, and the possibility exists that some of the noncoding DNA serves to influence chromatin structure and function. In this age of genomics and bioinformatics, genomic DNA sequences are being searched for informational content beyond the known genetic code. The discovery that period-10 non-T, A/T, G (VWG) triplets are among the most abundant motifs in human genomic DNA suggests that they may serve some function in higher organisms. In this paper, we provide direct evidence that the regular oscillation of period-10 VWG that occurs in the chicken ovalbumin gene sequence with a dinucleosome-like period facilitates nucleosome array formation. Using a linker histone-dependent in vitro chromatin assembly system that spontaneously aligns nucleosomes into a physiological array, we show that nucleosomes tend to avoid DNA regions with low period-10 VWG counts. This avoidance leads to the formation of an array with a nucleosome repeat equal to half the period value of the oscillation in period-10 VWG, as determined by Fourier analysis. Two different half-period deletions in the wild-type DNA sequence altered the nucleosome array, as predicted computationally. In contrast, a full-period deletion had an insignificant effect on the nucleosome array formed, also consistent with the prediction. An inversion mutation, with no DNA sequences deleted, again altered the nucleosome array formed, as predicted computationally. Hence, a VWG dinucleosome signal is plausible.  相似文献   

19.
Prokaryotic sequences are responsible for more than just protein coding. There are two 10- to 11-base periodical patterns superimposed on the protein coding message within the same sequence. Positional auto- and cross-correlation analysis of the sequences shows that these two patterns are a short-range counter-phase oscillation of AA and TT dinucleotides and a medium-range in-phase oscillation of the same dinucleotides, spanning distances of up to ∼30 and ∼100 bases, respectively. The short-range oscillation is encoded by the amino acid sequences themselves, apparently, due to the presence of amphipathic α-helices in the proteins. The medium-range oscillation, related to DNA folding in the cell, is created largely by a special choice of the bases in the third positions of the codons. Interestingly, the amino acid sequences do contribute to that signal as well. That is, the very amino acid sequences are, to some extent, degenerate to serve the same oscillating pattern that is associated with the degenerate third codon positions. [Reviewing Editor: Dr. Richard Kliman]  相似文献   

20.
We have mapped in vitro nucleosome positioning on the sheep β-lactoglobulin gene using high-throughput sequencing to characterise the DNA sequences recovered from reconstituted nucleosomes. This methodology surpasses previous approaches for coverage, accuracy and resolution and, most importantly, offers a simple yet rapid and relatively inexpensive method to characterise genomic DNA sequences in terms of nucleosome positioning capacity. We demonstrate an unambiguous correspondence between in vitro and in vivo nucleosome positioning around the promoter of the gene; identify discrete, sequence-specific nucleosomal structures above the level of the canonical core particle—a feature that has implications for regulatory protein access and higher-order chromatin packing; and reveal new insights into the involvement of periodically organised dinucleotide sequence motifs of the type GG and CC and not AA and TT, as determinants of nucleosome positioning—an observation that supports the idea that the core histone octamer can exploit different patterns of sequence organisation, or structural potential, in the DNA to bring about nucleosome positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号