首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyperhomocysteinemia is regarded as an independent risk factor for cardiovascular disorders. Although renal dysfunction or failure is one of the important factors causing hyperhomocysteinemia, the role of homocysteine (Hcy) in the development of glomerulosclerosis is largely unknown. One of the key events in the pathogenesis of glomerulosclerosis is the infiltration of circulating monocytes into affected glomeruli. The objective of the present study was to investigate the effect of Hcy on the expression of monocyte chemoattractant protein-1 (MCP-1) in kidney mesangial cells and the mechanisms involved. Levels of MCP-1 and mRNA were significantly elevated in Hcy-treated rat mesangial cells. This increase was associated with activation of NF-kappaB as a result of increased phosphorylation of the inhibitor protein IkappaBalpha. Monocyte chemotactic activity in these cells was also enhanced. In addition, there was a significant elevation of superoxide anion produced by Hcy-treated cells, which preceded the increased phosphorylation of IkappaBalpha. Addition of superoxide dismutase or NF-kappaB inhibitors to the culture medium abolished Hcy-induced NF-kappaB activation and MCP-1 expression. Taken together, these results indicate that Hcy induced MCP-1 expression in mesangial cells. Such a process was mediated by oxidative stress and NF-kappaB activation. This may further aggravate renal function in patients with hyperhomocysteinemia.  相似文献   

2.
The effect of intraperitoneal administration of tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the tocopherol treated group were not observed. The light emission was significantly higher in the control than in the tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbateFe2+ lipid peroxidation. The protector effect observed by tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

3.
The infiltration of the glomerulus by monocyte-derived macrophages is an important step in the pathogenesis of glomerular injury. The factors regulating glomerular leukocyte traffic remain unknown. We postulated that the glomerular mesangial cell (MC) may participate in the development of glomerular inflammation through the production of the monocyte-specific chemotactic factor, monocyte chemoattractant protein-1 (MCP-1). Using a cell culture system, we found that human MC produced a basal level of monocyte chemotactic activity, which was significantly increased by the inflammatory cytokines IL-1 beta and TNF-alpha. This increase in bioactivity correlated with the increased expression of MCP-1 mRNA by cytokine-conditioned MC. The total chemotactic activity of MC-conditioned supernatants was reduced by more than 80% after immunoadsorption with a specific anti-MCP-1 antibody. Thus, MC could play a role in inflammatory glomerular conditions through the production of MCP-1.  相似文献   

4.
The interaction between mesangial cells (MCs) and monocytes/macrophages (Mo/Mo) is an important pathogenic feature of glomerulonephritis. However, its mechanism is not fully elucidated. Studies to date have focused on the interactions through mediators. In the present study, to obtain insight into the mechanism of the interaction between MCs and Mo/Mo, we examined the significance of the cell to cell interaction of these cells in the context of monocyte chemoattractant protein-1 (MCP-1) expression using cell contact cultures or co-culture without contact. Our results revealed that the cellular adhesion of cultured macrophages to MCs induced the expression of MCP-1, which was mainly observed in the MCs. In addition, the induction of MCP-1 was, at least in part, mediated by nuclear factor kappa-B activation which occurs preferentially in the MCs. Because MCP-1 is suggested to play an important role in glomerulonephritis, this novel cell to cell interaction between the MCs and Mo/Mo could be important in glomerulonephritis.  相似文献   

5.
Recently, monocyte chemoattractant protein (MCP)-1 has been characterized as a novel adipocytokine upregulated in obesity and insulin resistance which impairs insulin signaling in muscle and fat in vitro. Growing evidence, on the other hand, suggests that increased activity of the sympathetic nervous system is an integral part in the development of insulin resistance. In the current study, the impact of the beta-adrenergic agonist isoproterenol on MCP-1 mRNA synthesis and secretion was determined in 3T3-L1 adipocytes. Interestingly, isoproterenol increased MCP-1 secretion 3-fold. Furthermore, 10 microM isoproterenol acutely induced MCP-1 mRNA by up to 5.3-fold in a time-dependent fashion with significant stimulation seen at concentrations as low as 0.3 microM effector. Studies using pharmacological inhibitors suggested that basal and isoproterenol-induced MCP-1 expressions are mediated via beta-adrenergic receptors and protein kinase A. Moreover, acute activation of adenylyl cyclase by forskolin was sufficient to mimic the effects of isoproterenol. Taken together, our results demonstrate that isoproterenol induces MCP-1 expression and secretion via a classical GS-protein-coupled pathway and support the notion that MCP-1 might be an interesting novel candidate linking obesity and insulin resistance.  相似文献   

6.
7.
Choi EK  Park HJ  Ma JS  Lee HC  Kang HC  Kim BG  Kang IC 《FEBS letters》2004,559(1-3):141-144
The effects of LY294002 (LY29) and wortmannin (WM), inhibitors of phosphatidylinositol 3-kinase (PI3K), on monocyte chemoattractant protein-1 (MCP-1) expression by human umbilical vein endothelial cells were investigated. Complete inhibition of interleukin (IL)-1beta-induced Akt phosphorylation occurred at 50 microM LY29 or 100 nM WM. At these concentrations, LY29, but not WM, significantly inhibited constitutive and IL-1beta-induced MCP-1 expression at both protein and mRNA levels. LY303511 (LY30), an inactive analogue of LY29, also inhibited MCP-1 expression. LY29 and LY30 inhibited activation of nuclear factor-kappaB (NF-kappaB). These results suggest that LY29 inhibits MCP-1 expression at least in part via suppression of NF-kappaB, independent of PI3K, and the structure of LY29 and LY30 may be a novel template for development of new anti-inflammatory drugs.  相似文献   

8.
Intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) play critical roles in mediating monocyte adhesion to the vascular endothelium and monocyte migration into the subendothelial regions of the vessels. Inasmuch as cardiotrophin-1 (CT-1), an IL-6-type cytokine, was expressed in human atherosclerotic plaque, we examined whether CT-1 induces monocyte adhesion and migration by stimulating gene and protein expressions of ICAM-1 and MCP-1 in human aortic endothelial cells (HAECs). Immunocytochemistry revealed that CT-1 increased intensity of ICAM-1 and MCP-1 immunoreactivity in HAECs. Adhesion assay and chemotaxis assay revealed that CT-1 increased human monocytic THP-1 cell adhesion to HAECs and promoted chemotaxis in THP-1 cells, which were attenuated by anti-ICAM-1 and anti-MCP-1 antibody, respectively. Western blot analysis showed that CT-1 increased phosphorylation of ERK1/2 MAP kinase, p38 MAP kinase, and Akt and that their inhibitors, PD-98059, SB-203580, and LY-294002, respectively, inhibited phosphorylation. RNase protection assay and ELISA demonstrated that CT-1 increased gene and protein expressions of ICAM-1 and MCP-1. EMSA revealed that CT-1 enhanced NF-kappaB DNA-binding activity. CT-1-mediated upregulation of ICAM-1 and MCP-1 was suppressed by PD-98059, SB-203580, LY-294002, and parthenolide. The present study demonstrates that CT-1 promotes monocyte adhesion and migration by stimulating ICAM-1 and MCP-1 through mechanisms that involve ERK1/2 MAP kinase, p38 MAP kinase, phosphatidylinositol 3-kinase, and NF-kappaB pathways and suggests that CT-1 plays an important role in the pathophysiology of vascular inflammation and atherosclerosis.  相似文献   

9.
Accumulating evidence demonstrates that aldosterone can cause extra-cellular matrix (ECM) accumulation, in addition to regulating sodium and potassium homeostasis. Increased extra-cellular matrix production by renal glomerular mesangial cells has been suggested to be involved in pathogenesis of glomerular sclerosis. The present studies examine whether aldosterone is also produced in renal mesangial cells, and the effect of aldosterone on ECM accumulation in these cells. In cultured renal mesangial cells, aldosterone synthase (CYP11B2), mineralocorticoid receptor (MR), and 11beta-HSD2 mRNA expressions were detected by RT-PCR. The ability of renal mesangial cells to produce aldosterone was confirmed by directly detecting aldosterone in culture medium via radioimmunoassay. Real-time RT-PCR showed that the expression of CYP11B2 mRNA in mesangial cells was significantly enhanced by AngII (P<0.001) and by potassium (P<0.05). Exposure of the cultured mesangial cells to aldosterone significantly increased fibronectin production from 12.4+/-1.9 to 74.6+/-16.8ng/ml (P<0.05). The aldosterone induced fibronectin production was abolished by aldosterone receptor antagonist spironolactone. Aldosterone also increased the TGF-beta1 reporter luciferase activity from 0.8+/-0.1 to 1.7+/-0.1 (P<0.05). Immunoblot showed TGF-beta1 protein expression was increased following aldosterone treatment. Blocking TGF-beta1 signaling pathway by knocking down Smad2 significantly blunted the aldosterone induced fibronectin production. The present studies indicate that renal mesangial cell is a target of local aldosterone action, which promotes ECM protein fibronectin production via TGF-beta1/Smad2 signaling pathway.  相似文献   

10.
The presence of antiphospholipid Ab is associated with increased risk of thrombosis. The monocyte-endothelial cell interaction has been suggested to play a key role at the site of vascular injury during thrombosis. Therefore, we tested the effect of anticardiolipin Abs (aCL) on the production of monocyte chemoattractant protein-1 (MCP-1) in HUVEC. We found that monoclonal aCL as well as IgG fractions from patients with antiphospholipid syndrome (APS-IgG) could induce the production of MCP-1 in HUVEC. The ability of IgG aCL to induce MCP-1 production could be abrogated by preabsorption with cardiolipin liposomes. Simultaneous addition of either monoclonal aCL or APS-IgG with IL-1beta resulted in synergistic increase in MCP-1 production, whereas the addition of control IgG lacking aCL activity did not alter IL-1beta-induced levels of MCP-1. MCP-1 mRNA expression was also up-regulated when HUVEC were incubated with either APS-IgG or monoclonal aCL, and down-regulated by the treatment of dexamethasone. In addition, we found that serum levels of MCP-1 in 76 systemic lupus erythematosus patients correlated well with the titers of IgG aCL. Collectively, these results indicate that aCL could promote endothelial cell-monocyte cross-talk by enhancing the endothelial production of MCP-1, thereby shifting the hemostatic balance toward the prothrombotic state of APS.  相似文献   

11.
12.
Hemodynamic forces are important determinants for the formation of atherosclerotic plaques. The recruitment of circulating monocytes into the arterial wall is an important step during atherogenesis. Monocyte chemotactic protein-1 (MCP-1) has been shown to be a key factor for monocyte transmigration. This study examined the effects of cyclic strain on MCP-1 mRNA expression levels of cultured rat aortic smooth muscle cells. The MCP-1 mRNA levels of aortic smooth muscle cells first increased as the duration of cyclic strain increased, reaching the maximum at 6-12 h, maintained at high levels throughout the 48-h strain period. To explore signaling pathways mediating cyclic strain-stimulated MCP-1 mRNA expression, we examined the involvement of tyrosine kinase and protein kinase C (PKC). Tyrosine kinase inhibitors, genistein and tyrphostin 51, at 50 microM blocked cyclic strain-stimulated MCP-1 mRNA expression. Preincubation with a PKC activator, phorbol 12-myristate 13-acetate (PMA), 2 microM, for 24 h to downregulate PKC did not decrease cyclic strain-induced MCP-1 mRNA expression. A 6-h incubation with 0. 1 microM PMA to activate PKC, which stimulated MCP-1 expression when applied alone, abolished the stimulatory effects of cyclic strain. A specific PKC inhibitor, calphostin C (0.1 microM), diminished cyclic strain-stimulated MCP-1 mRNA expression. Angiotensin II at 10 or 1,000 nM induced a moderate upregulation of MCP-1 mRNA, and no synergistic effects were observed between angiotensin II and cyclic strain. These results indicate that cyclic strain stimulates MCP-1 mRNA expression in smooth muscle cells through signaling pathway(s) mediated by tyrosine kinase activation.  相似文献   

13.
14.
Accumulation of monocytes and the entrapment of oxidized-low-density lipoprotein (ox-LDL) in monocytes are important in the differentiation into "foam" macrophages and the pathogenesis of atherosclerosis. We investigated the role of monocyte chemoattractant protein-1 (MCP-1) in the expression of scavenger receptor (SCR) by using resting monocytes prepared by counterflow centrifugal elutriation. Our results showed that: (1) MCP-1 increased the expression of CD36 SCR by flow cytometric analysis. (2) MCP-1 increased incorporation of 125I-labeled ox-LDL and oil red O staining. (3) MCP-1 and ox-LDL enhanced in vitro transendothelial monocyte migration. (4) These functions were mediated at least in part via extracellular signal-regulated kinase (ERK) pathway. (5) MCP-1 and ox-LDL did not induce monocyte proliferation. Our results imply that MCP-1 is involved in the inflammatory process of atherosclerosis through the induction of SCR expression via the ERK pathway and differentiation of monocytes into foam macrophages, as well as induction of monocyte migration.  相似文献   

15.
16.
Human monocyte chemoattractant protein-1 (hMCP-1) was produced using a baculovirus system. The hMCP-1 cDNA was inserted into the genomic DNA of Autographa californica nuclear polyhedrosis virus (AcNPV) using a transfer vector, pJVP10Z. Spodoptera frugiperda insect cells, which were infected with this recombinant virus, secreted recombinant hMCP-1 (re-hMCP-1) at the level of 10–20 μg/ml of culture medium. This product was shown to chemoattract monocytes. Three distinct bands of 11,11.5 and 12 kDa were revealed by immunoblotting analysis, and this heterogeneity was assigned to differences in carbohydrate processing. N-terminal amino-acid sequence analysis of the purified product revealed identity with hMCP-1. Thus, in this system, re-hMCP-1 was produced in large quantities and modified in a manner similar to native hMCP-1.  相似文献   

17.
Homocysteinemia is an independent risk factor for cardiovascular disorders. The recruitment of monocytes is an important event in atherogenesis. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that stimulates monocyte migration into the intima of arterial walls. The objective of the present study was to investigate the effect of homocysteine on MCP-1 expression in macrophages and the underlying mechanism of such effect. Human monocytic cell (THP-1)-derived macrophages were incubated with homocysteine. By nuclease protection assay and ELISA, homocysteine (0.05-0.2 mM) was shown to significantly enhance the expression of MCP-1 mRNA (up to 2.6-fold) and protein (up to 4.8-fold) in these cells. Homocysteine-induced MCP-1 expression resulted in increased monocyte chemotaxis. The increase in MCP-1 expression was associated with activation of nuclear factor (NF)-kappaB due to increased phosphorylation of the inhibitory protein (IkappaB-alpha) as well as reduced expression of IkappaB-alpha mRNA in homocysteine-treated cells. In conclusion, our results demonstrate that homocysteine, at pathological concentration, stimulates MCP-1 expression in THP-1 macrophages via NF-kappaB activation.  相似文献   

18.
Monocyte chemoattractant/chemotactic protein-1 (MCP-1), a member of the CC chemokine family, is one of the key chemokines that regulate migration and tissue infiltration of monocytes/macrophages. Its role in the pathophysiology of several inflammatory diseases has been widely recognized, thus making MCP-1 a possible target for anti-inflammatory treatments. Curcumin (diferuloylmethane) is a natural polyphenol derived from the rhizomes of Curcuma Longa L. (turmeric). Anti-inflammatory action underlies numerous pharmacological effects of curcumin in the control and prevention of several diseases. The purpose of this review is to evaluate the effects of curcumin on the regulation of MCP-1 as a key mediator of chemotaxis and inflammation, and the biological consequences thereof. In vitro studies have shown that curcumin can decrease MCP-1 production in various cell lines. Animal studies have also revealed that curcumin can attenuate MCP-1 expression and improve a range of inflammatory diseases through multiple molecular targets and mechanisms of action. There is limited data from human clinical trials showing the decreasing effect of curcumin on MCP-1 concentrations and improvement of the course of inflammatory diseases. Most of the in vitro and animal studies confirm that curcumin exert its MCP-1-lowering and anti-inflammatory effects by down-regulating the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathway. As yet, there is limited data from human clinical trials showing the effect of curcumin on MCP-1 levels and improvement of the course of inflammatory diseases. More evidence, especially from human studies, is needed to better assess the effects of curcumin on circulating MCP-1 in different human diseases and the role of this modulatory effect in the putative anti-inflammatory properties of curcumin.  相似文献   

19.
Rabbit neutrophil attractant/activation protein-1 (NAP-1) and monocyte chemoattractant protein-1 (MCP-1) were investigated. Rabbit spleen cells stimulated with 5 micrograms/ml of Con A produced both neutrophil and monocyte chemotactic activity. Physicochemical characteristics of those activities obtained by HPLC gel filtration and HPLC chromatofocusing were very similar to those of human NAP-1 and MCP-1, suggesting that rabbit spleen cells produce NAP-1 and MCP-1 after Con A stimulation. A cDNA library was constructed from mRNA purified from Con A-stimulated rabbit spleen cells and screened with oligonucleotide probes. By two rounds of screening, NAP-1 and MCP-1 cDNA were cloned. NAP-1 cDNA comprises 1500 bp with an open reading frame that encodes for a 101-amino acid protein highly similar to human NAP-1. MCP-1 cDNA comprises 607 bp with an open reading frame that encodes for a 124-amino acid protein highly similar to human MCP-1. Expression of NAP-1 and MCP-1 mRNA by rabbit spleen cells was studied. Both Con A- and LPS-stimulated spleen cells expressed NAP-1 and MCP-1 mRNA, but the kinetics of expression were different. Con A rapidly induced high NAP-1 and MCP-1 mRNA expression. LPS also rapidly induced NAP-1 mRNA expression, but high MCP-1 mRNA expression was not observed until 15 h after stimulation. Immunoprecipitation of metabolically labeled NAP-1 and MCP-1 with anti-human NAP-1 or MCP-1 polyclonal antibodies was attempted. Immunoprecipitated rabbit NAP-1 with a molecular mass of about 7 kDa was detected by SDS-PAGE and radioautography, but MCP-1 was not. Cloned rabbit NAP-1 and MCP-1 will give us opportunities to study the role of NAP-1 and MCP-1 in vivo.  相似文献   

20.
糖尿病肾病是多因素引起的复杂性疾病,近年研究发现炎症反应参与了该病的发生与发展.单核细胞趋化蛋白-1是趋化因子CC亚家族的一员,在募集巨噬细胞等炎性细胞参与炎症反应中扮演着重要的角色.其趋化单核巨噬细胞于糖尿病肾组织中,可介导溶酶体释放,产生氧自由基,促进单核巨噬细胞表达β1-转化生长因子(transforming growth factor β1,TGF-β1),而广泛浸润臣噬细胞加剧了肾小球基底膜增厚、细胞外基质堆积,进而发展为肾小球硬化和间质纤维化.深入研究单核细胞趋化蛋白-1在糖尿病肾病中的作用,可望为糖尿病肾病的预防和治疗提供新的思路和途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号