首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
细胞膜蛋白与细胞骨架蛋白相互作用研究进展   总被引:1,自引:0,他引:1  
细胞膜蛋白与胞浆骨架蛋白的相互作用对于维持细胞正常形态,细胞粘附与信号传导有重要作用,含有4.1/JEF结构域的蛋白4.1超家族与含有PDZ结构域的MAGUK蛋白家族能结合多种膜蛋白胞内区与胞浆蛋白,在膜蛋白与胞浆蛋白之间建立联系,对于细胞、细胞-细胞间连接的正常结构与功能的维持有着重要作用。  相似文献   

2.
自19世纪中叶荷兰化学家GerardusMul-der从动物组织和植物体中提取出蛋白质以来,人们发现了越来越多的蛋白质,据估计生物界中蛋白质的种类可达1010~1012之多;在这如此众多的蛋白质中,功能性蛋白发挥着极其重要的生理功能。功能性蛋白也有人...  相似文献   

3.
蛋白内含子与蛋白剪接   总被引:1,自引:0,他引:1  
蛋白内含子和蛋白剪接是蛋白质研究的前沿领域。重点介绍了蛋白内含子的结构和蛋白剪接机理的最新研究成果 ;蛋白内含子如同RNA剪接中的内含子 ,也是一类可移动的遗传元件 ;蛋白内含子目前研究的热点是蛋白内含子的功能研究及其在蛋白质工程和其它生物工程领域的用。  相似文献   

4.
甜蛋白与抗虫蛋白   总被引:1,自引:0,他引:1  
在植物中发现有极甜的蛋白质。植物中也有抗虫的蛋白质,其中一类抗虫蛋白与甜蛋白在结构上极为相似。介绍了它们的研究现状和广泛的应用前景。  相似文献   

5.
细胞周期蛋白   总被引:2,自引:0,他引:2  
P34^cdc2激酶在真核生物细胞周期的调节中起着核心作用,它由催化亚基与调节亚基共同组成,催亚基主要有两种亚型,分别在细胞周期的不同时相发挥作用,调节亚基称为细胞周期蛋白,亦不止一种,可相应地分为G1期细胞周期蛋白与M期细胞周期蛋白。  相似文献   

6.
甜味蛋白和矫味蛋白的研究进展   总被引:5,自引:1,他引:4  
迄今为止,已发现了六种甜味蛋白和一种矫味蛋白,它们具有无毒、安全、热量低等优点,因此有可能取代蔗糖成为一类新型甜味剂。这些蛋白结构虽然都能诱发甜味,但他们结构却不一样。许多生物技术被应用到这类蛋白的研究中,但廉价而安全地把这类蛋白推向市场还需进一步研究。  相似文献   

7.
8.
植物磷胁迫蛋白和铁胁迫蛋白研究进展   总被引:1,自引:0,他引:1  
李红  邝炎华 《植物学通报》2001,18(5):571-576
综述了近十年来国内外有关研究植物磷胁迫蛋白和铁胁迫蛋白的文献,着重阐述了磷胁迫和铁胁迫条件下的植物蛋白质变化,如新的蛋白和新的多肽的特异产生,以及相关的分子生物学进展。  相似文献   

9.
Di Y  Xia SH  Tong CQ 《生理科学进展》2006,37(3):263-265
AGS3蛋白是影响受体到G蛋白的信号转导或直接影响非受体依赖型G蛋白激活的蛋白质之一。AGS3蛋白在脑、睾丸、肝脏、肾脏、心脏、胰腺及PC-12细胞中普遍分布。它不仅具有不依赖受体的Gβγ信号转导激活物的作用,也能作为二磷酸乌苷(GDP)的解离抑制剂,并负向调节G蛋白偶联受体对G蛋白的激活。AGSl、AGS2、AGS4是AGS家族的其它几个成员,能选择性激活不同类型的G蛋白。LGN和PINS蛋白是AGS3的同系物。AGS3蛋白与信号转导的关系是目前研究的热点之一。  相似文献   

10.
蛋白- 蛋白作用界面特征及界面预测研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
蛋白-蛋白界面与其余蛋白表面有明显的差别。本文对近年来国内外有关蛋白-蛋白界面几何学、物理学、化学、进化保守性等方面特征的研究概况及应用这些特征对单体中预测界面方法的研究进展于以综述。  相似文献   

11.
12.
Trichosanthin (TCS) possesses many biological and pharmaceutical activities, but its strong immunogenicity limits its clinical application. To reduce the immunogenicity of TCS, we modified the reported method for the prediction of antigenic site and identified two crucial amino acid residues (Y55 and D78) for a new epitope. We mutated these two residues into glycine and serine, respectively, and obtained three mutants, Y55G, D78S, and Y55G/D78S. These mutants induced less amount of Ig and IgG antibodies in C57BL/6J mice than wild-type TCS (wTCS) (p<0.01) and almost lost the ability to induce IgE antibody production. The mutants stimulated fewer TCS-specific B cells in C57BL/6J mice than wTCS (p<0.01). Compared with wTCS, Y55G, D78S, and Y55G/D78S lost 26.9%, 17.9%, and 98.7% specific binding ability to anti-TCS monoclonal antibody TCS4E9, respectively. These mutants still retained RNA N-glycosidase activity. In conclusion, Y55 and D78 are two crucial amino acid residues of a new IgE epitope on TCS, and their mutation reduces the immunogenicity of TCS, but still retained the enzymatic activity.  相似文献   

13.
He D  Zheng Y  Tam S 《Life sciences》2012,90(17-18):673-681
AimsTrichosanthin (TCS) is a type I ribosome-inactivating protein. We have previously shown that TCS induces a more potent apoptosis in infected cells over uninfected cells, but the mechanism underlying it is unclear. In this study, we explored the anti-HSV-1 mechanism of TCS through the nuclear factor-κB (NF-κB) and p53 pathways in human epithelial carcinoma (HEp-2) cells with wild type p53.Main methodsThe western blot, electrophoretic mobility shift assay, chromatin immunoprecipitation assay, enzyme-linked immunosorbent assay and cytokinesis-block micronucleus were applied in this study.Key findingsIt was shown that TCS inhibited the HSV-1-induced NF-κB activation. Meanwhile, in HSV-1 infected cells, TCS treatment activated significantly more p53 and BAX, with no DNA damage and less S phase arrest compared with uninfected cells. The activation of BAX in infected cells correlated with the cell death signaling of p53.SignificanceTaken together, these results suggest that the anti-HSV-1 effect of TCS is related to its suppression of NF-κB activation and regulation of p53-dependent cell death in infected cells.  相似文献   

14.
Recently, we have demonstrated that trichosanthin (TCS), a promising agent for the treatment of cervical adenocarcinoma, inhibited HeLa cell proliferation through the PKC/MAPK/CREB signal pathway. Furthermore, TCS down-regulated Bcl-2 expression was abrogated by a decoy oligonucleotide (OGN) to the cyclic AMP-responsive element (CRE). The decoy OGN blocked the binding of CRE-binding protein (CREB) to Bcl-2. These results suggested that CRE-mediated gene expression may play a pivotal role in HeLa cell proliferation. However, little is known about the effect of TCS on cell cycle arrests, particularly, whether the genes involved in cell cycle were regulated by CRE. Our present study shows that the arrests of S, G1 and G2/M phases were accompanied by the significant down-regulation of cyclin A, D1 and CDK 2, 4 in HeLa cells, cyclin D1, E and CDK 2, 4 in Caski and C33a cells, and cyclin A, B1, E and CDK 2 in SW1990 cells. However, the cell cycle arrests were reversed via the significant up-regulation of cyclin A and D1, by the combined treatment of TCS and CRE. In conclusion, these data demonstrate for the first time that specific cell cycle arrests in cancer cells can be induced by TCS by inhibiting the binding of CREB to CRE on genes related to cell proliferation.  相似文献   

15.
Li F  Mei Y  Wang Y  Chen C  Tu J  Xiao B  Xu L 《Cellular immunology》2005,234(1):23-30
Trichosanthin (TCS) has been found to exhibit inflammation-suppressing effect but the underlying mechanisms are not clear. In this study, we found that TCS inhibited OVA-specific T cell proliferation in a dose-dependent manner. Such inhibition was correlated with enhanced cell death. At the same time, inducible nitric oxide synthase (iNOS) mRNA expression and protein levels were found increased in cells treated with TCS, and nitric oxide (NO) production by cells was elevated in the presence of TCS. When L-NIL, the specific inhibitor of iNOS, was added to suppress NO production induced by TCS, OVA-specific cell death was significantly inhibited, meanwhile, thymidine incorporation of cells was rescued towards normal levels. These results indicate that TCS could inhibit antigen-specific T cell activation via NO-mediated apoptosis pathway.  相似文献   

16.
Testicular cell suspension (TCS) can be cryopreserved for male germ-line preservation and fertility restoration. We aimed to validate a cryopreservation protocol for TCS of domestic cat to be applied in endangered felids species. Testis tissue from adult domestic cats was enzymatically dissociated and spermatogenic cells were enriched. The resulting TCS was diluted in 7.5% or 15% Me2SO based medium. Slow and fast freezing methods were tested. We examined the effects of freezing approaches using two combinations of fluorescent dyes: Calcein-AM with Propidium iodide (C/PI) and SYBR14 with Propidium iodide (S/PI). Ploidy analysis of domestic cat fresh TCS revealed that the majority of testicular cells were haploid cells. Based on microscopic observation, two size populations (12.3 ± 2.3 μm and 20.5 ± 4 μm in diameter) were identified and presumed to be mainly spermatids and spermatocytes, respectively. Both evaluation methods proved higher viability of aggregated cells before and after cryopreservation compared with single cells, and superiority of low concentration of Me2SO (7.5%) in association with slow freezing to preserve viability of testicular cells. However, S/PI resulted in a more precise evaluation compared with the C/PI method. The combination of 7.5% Me2SO-based medium with slow freezing yielded post thaw viability of S/PI labeled aggregated (49.8 ± 20%) and single cells (31.5 ± 8.1%). Comparable results were achieved using testes of a Cheetah and an Asiatic golden cat. In conclusion, TCS from domestic cat can be successfully cryopreserved and has the potential to support fertility restoration of endangered felids species.  相似文献   

17.
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3′ UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3′ UTR and the pericentriolar material-1 (Pcm-1) mRNA 3′ UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3′ UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3′ UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.  相似文献   

18.
Trichosanthin (TCS), a type I ribosome-inactivating protein, induces cell death in various cell types including several tumor cell lines. However, the mechanism remains largely uncharacterized. In this study, we investigated the possible mechanism underlying its cytotoxicity by using human chronic myeloid leukemia cell line K562. We found that TCS induced apoptosis in K562 cells in a time- and concentration-dependent manner and can be blocked by caspase-3 inhibitors. Interestingly, TCS treatment induced a transient elevation in intracellular calcium concentration and a slow increase in reactive oxygen species production, while calcium chelators and antioxidants had no obvious effect on TCS-induced apoptosis, suggesting that calcium changes and reactive oxygen species may not be involved in TCS-mediated apoptosis in K562 cells. Instead we found that TCS partly inhibited PKC activity. Indeed, the PKC activator, PMA, inhibited while the PKC inhibitor, calphostin c, enhanced TCS-induced apoptosis. These PKC modulators had similar effects on TCS-induced cleavage of caspase-3, and caspase-3 inhibitors prevented calphostin c-enhanced apoptosis induced by TCS. In summary, we conclude that TCS induces apoptosis in K562 cells partly via PKC inhibition and caspase-3 activation.  相似文献   

19.
Trichosanthin (TCS), the major effective component from Chinese herb Trichosanthes Kirilowii Maxim, is also a potent allergen. Our previous work has shown that TCS can upregulate interleukin-4 (IL-4) and interleukin-13 (IL-13) while inhibit interferon-gamma (IFN-gamma) in mesenteric lymph node cells after TCS immunization. Thus, TCS can arouse a T helper 2 (Th2) response in the draining lymph node. However, little is known about the early effects of TCS on antigen-presenting cells, the initiator of T cell response. In the current study, the effects of TCS on macrophage cytokines and chemokine expression were investigated. Peritoneal macrophages were treated with or without TCS in the presence of lipopolysaccharide (LPS). We found that TCS increased macrophage interleukin-10 (IL-10) and monocyte chemoattractant protein-1 (MCP-1) expression, whereas it decreased interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-alpha) expression. Our study clearly demonstrated that TCS, as an allergen, has differential effects on macrophage Th1/Th2 initiative factors, effects that are likely to facilitate its inducing of Th2 and immunoglobulin E (IgE) response.  相似文献   

20.
AIM: To assess potential function of each two-component signal transduction system in the expression of Streptococcus mutans virulence properties. METHODS AND RESULTS: For each two-component system (TCS), the histidine kinase-encoding gene was inactivated by a polymerase chain reaction (PCR)-based deletion strategy and the effects of gene disruption on the cell's ability to form biofilms, become competent, and tolerate acid, osmotic, and oxidative stress conditions were tested. Our results demonstrated that none of the mutations were lethal for S. mutans. The TCS-2 (CiaRH) is involved in biofilm formation and tolerance to environmental stresses, the TCS-3 (ScnRK-like) participates in the survival of cells at acidic pH, and the TCS-9 affects the acid tolerance response and the process of streptococcal competence development. CONCLUSIONS: Our results confirmed the physiological role of the TCS in S. mutans cellular function, in particular the SncRK-like TCS and TCS-9 as they may represent new regulatory systems than can be involved in S. mutans pathogenesis. SIGNIFICANCE AND IMPACT OF THE STUDY: Multiple TCS govern important biological parameters of S. mutans enabling its survival and persistence in the biofilm community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号