首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In FDCP2 myeloid cells, IL-4 activated cyclic nucleotide phosphodiesterases PDE3 and PDE4, whereas IL-3, granulocyte-macrophage CSF (GM-CSF), and phorbol ester (PMA) selectively activated PDE4. IL-4 (not IL-3 or GM-CSF) induced tyrosine phosphorylation of insulin-receptor substrate-2 (IRS-2) and its association with phosphatidylinositol 3-kinase (PI3-K). TNF-alpha, AG-490 (Janus kinase inhibitor), and wortmannin (PI3-K inhibitor) inhibited activation of PDE3 and PDE4 by IL-4. TNF-alpha also blocked IL-4-induced tyrosine phosphorylation of IRS-2, but not of STAT6. AG-490 and wortmannin, not TNF-alpha, inhibited activation of PDE4 by IL-3. These results suggested that IL-4-induced activation of PDE3 and PDE4 was downstream of IRS-2/PI3-K, not STAT6, and that inhibition of tyrosine phosphorylation of IRS molecules might be one mechnism whereby TNF-alpha could selectively regulate activities of cytokines that utilized IRS proteins as signal transducers. RO31-7549 (protein kinase C (PKC) inhibitor) inhibited activation of PDE4 by PMA. IL-4, IL-3, and GM-CSF activated mitogen-activated protein (MAP) kinase and protein kinase B via PI3-K signals; PMA activated only MAP kinase via PKC signals. The MAP kinase kinase (MEK-1) inhibitor PD98059 inhibited IL-4-, IL-3-, and PMA-induced activation of MAP kinase and PDE4, but not IL-4-induced activation of PDE3. In FDCP2 cells transfected with constitutively activated MEK, MAP kinase and PDE4, not PDE3, were activated. Thus, in FDCP2 cells, PDE4 can be activated by overlapping MAP kinase-dependent pathways involving PI3-K (IL-4, IL-3, GM-CSF) or PKC (PMA), but selective activation of PDE3 by IL-4 is MAP kinase independent (but perhaps IRS-2/PI3-K dependent).  相似文献   

3.
The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine signal transduction. SOCS3 is a key negative regulator of interleuking-6 (IL-6) signal transduction. Furthermore, SOCS3 was shown to be phosphorylated upon treatment of cells with IL-2, and this has been reported to regulate its function and half-life. We set out to investigate whether SOCS3 phosphorylation may play a role in IL-6 signaling. Tyrosine-phosphorylated SOCS3 was detected upon treatment of mouse embryonic fibroblasts with IL-6. Interestingly, the observed SOCS3 phosphorylation does not require SOCS3 recruitment to phosphotyrosine (Tyr(P)) 759 of gp130, and the kinetics of SOCS3 phosphorylation do not match the activation kinetics of the Janus kinases. This suggests that other kinases may be involved in SOCS3 phosphorylation. Using Src and Janus kinase inhibitors as well as Src kinase-deficient mouse embryonic fibroblasts, we provide evidence that Src kinases, which we found to be constitutively active in these cells, are involved in the phosphorylation of IL-6-induced SOCS3. In addition, we found that receptor-tyrosine kinases such as platelet-derived growth factor receptor or epidermal growth factor receptor can very potently phosphorylate IL-6-induced SOCS3. Taken together, these results suggest that SOCS3 phosphorylation is not a JAK-mediated phenomenon but is dependent on the activity of other kinases such as Src kinases or receptor-tyrosine kinases, which can either be constitutively active or activated by an additional stimulus.  相似文献   

4.
The immune system is an important target for the cytokine TGF-beta1, whose actions on lymphocytes are largely inhibitory. TGF-beta has been reported to inhibit IL-12- and IL-2-induced cell proliferation and IFN-gamma production by T cells and NK cells; however, the mechanisms of inhibition have not been clearly defined. It has been suggested by some studies that TGF-beta blocks cytokine-induced Janus kinase (JAK) and STAT activation, as in the case of IL-2. In contrast, other studies with cytokines like IFN-gamma have not found such an inhibition. The effect of TGF-beta on the IL-12-signaling pathway has not been addressed. We examined this and found that TGF-beta1 did not have any effect on IL-12-induced phosphorylation of JAK2, TYK2, and STAT4 although TGF-beta1 inhibited IL-2- and IL-12-induced IFN-gamma production. Similarly, but in contrast to previous reports, we found that TGF-beta1 did not inhibit IL-2-induced phosphorylation of JAK1, JAK3, and STAT5A. Furthermore, gel shift analysis showed that TGF-beta1 did not prevent activated STAT4 and STAT5A from binding to DNA. Our results demonstrate that the inhibitory effects of TGF-beta on IL-2- and IL-12-induced biological activities are not attributable to inhibition of activation of JAKs and STATs. Rather, our data suggest the existence of alternative mechanisms of inhibition by TGF-beta.  相似文献   

5.
A gain-of-function mutation in STAT6   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
Numerous reports suggest that IL-6 promotes survival and proliferation of multiple myeloma (MM) cells through the phosphorylation of a cell signaling protein, STAT3. Thus, agents that suppress STAT3 phosphorylation have potential for the treatment of MM. In the present report, we demonstrate that curcumin (diferuloylmethane), a pharmacologically safe agent in humans, inhibited IL-6-induced STAT3 phosphorylation and consequent STAT3 nuclear translocation. Curcumin had no effect on STAT5 phosphorylation, but inhibited the IFN-alpha-induced STAT1 phosphorylation. The constitutive phosphorylation of STAT3 found in certain MM cells was also abrogated by treatment with curcumin. Curcumin-induced inhibition of STAT3 phosphorylation was reversible. Compared with AG490, a well-characterized Janus kinase 2 inhibitor, curcumin was a more rapid (30 min vs 8 h) and more potent (10 micro M vs 100 micro M) inhibitor of STAT3 phosphorylation. In a similar manner, the dose of curcumin completely suppressed proliferation of MM cells; the same dose of AG490 had no effect. In contrast, a cell-permeable STAT3 inhibitor peptide that can inhibit the STAT3 phosphorylation mediated by Src blocked the constitutive phosphorylation of STAT3 and also suppressed the growth of myeloma cells. TNF-alpha and lymphotoxin also induced the proliferation of MM cells, but through a mechanism independent of STAT3 phosphorylation. In addition, dexamethasone-resistant MM cells were found to be sensitive to curcumin. Overall, our results demonstrated that curcumin was a potent inhibitor of STAT3 phosphorylation, and this plays a role in the suppression of MM proliferation.  相似文献   

8.
9.
10.
IL-12 and IL-2 can stimulate mitogen- or CD3-activated T cells to proliferate, produce IFN-gamma, and kill tumor cells. The magnitude of these functional responses is greatly augmented when T cells are activated by the combination of IL-12 and IL-2. Although peripheral blood T cells are largely unresponsive to these cytokines without prior activation, a small subset of CD8+ T cells (CD8+CD18bright) is strongly activated by the combination of IL-12 and IL-2. In this report we show that the functional synergy between IL-12 and IL-2 in CD8+CD18bright T cells correlates with the activation of the stress kinases, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/Jun N-terminal kinase, but not with the activation of the extracellular signal-regulated kinases. The functional synergy between IL-2 and IL-12 is also associated with a prominent increase in STAT1 and STAT3 serine phosphorylation over that observed with IL-12 or IL-2 alone. By contrast, STAT tyrosine phosphorylation is not augmented over that seen with either cytokine alone. A specific inhibitor of p38 MAP kinase completely inhibits the serine phosphorylation of STAT1 and STAT3 induced by IL-12 and IL-2 and abrogates the functional synergy between IL-12 and IL-2 without affecting STAT tyrosine phosphorylation. This suggests that p38 MAP kinase may play an important role in regulating STAT serine phosphorylation in response to the combination of IL-12 and IL-2. Furthermore, these findings indicate that the optimal activation of T cells by IL-12 and IL-2 may depend on an interaction between the p38 MAP kinase and Janus kinase/STAT signaling pathways.  相似文献   

11.
12.
13.
14.
Glucocorticoids are widely used in the therapy of inflammatory, autoimmune, and allergic diseases. As the end-effectors of the hypothalamic-pituitary-adrenal axis, endogenous glucocorticoids also play an important role in suppressing innate and cellular immune responses. Previous studies have indicated that glucocorticoids inhibit Th1 and enhance Th2 cytokine secretion. IL-12 promotes Th1 cell-mediated immunity, while IL-4 stimulates Th2 humoral-mediated immunity. Here, we examined the regulatory effect of glucocorticoids on key elements of IL-12 and IL-4 signaling. We first investigated the effect of dexamethasone on IL-12-inducible genes and showed that dexamethasone inhibited IL-12-induced IFN-gamma secretion and IFN regulatory factor-1 expression in both NK and T cells. This occurred even though the level of expression of IL-12 receptors and IL-12-induced Janus kinase phosphorylation remained unaltered. However, dexamethasone markedly inhibited IL-12-induced phosphorylation of Stat4 without altering its expression. This was specific, as IL-4-induced Stat6 phosphorylation was not affected, and mediated by the glucocorticoid receptor, as it was antagonized by the glucocorticoid receptor antagonist RU486. Moreover, transfection experiments showed that dexamethasone reduced responsiveness to IL-12 through the inhibition of Stat4-dependent IFN regulatory factor-1 promoter activity. We conclude that blocking IL-12-induced Stat4 phosphorylation, without altering IL-4-induced Stat6 phosphorylation, appears to be a new suppressive action of glucocorticoids on the Th1 cellular immune response and may help explain the glucocorticoid-induced shift toward the Th2 humoral immune response.  相似文献   

15.
The closely related Th2 cytokines, IL-4 and IL-13, share many biological functions that are considered important in the development of allergic airway inflammation and airway hyperresponsiveness (AHR). The overlap of their functions results from the IL-4R alpha-chain forming an important functional signaling component of both the IL-4 and IL-13 receptors. Mutations in the C terminus region of the IL-4 protein produce IL-4 mutants that bind to the IL-4R alpha-chain with high affinity, but do not induce cellular responses. A murine IL-4 mutant (C118 deletion) protein (IL-4R antagonist) inhibited IL-4- and IL-13-induced STAT6 phosphorylation as well as IL-4- and IL-13-induced IgE production in vitro. Administration of murine IL-4R antagonist during allergen (OVA) challenge inhibited the development of allergic airway eosinophilia and AHR in mice previously sensitized with OVA. The inhibitory effect on airway eosinophilia and AHR was associated with reduced levels of IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluid as well as reduced serum levels of OVA-IGE: These observations demonstrate the therapeutic potential of IL-4 mutant protein receptor antagonists that inhibit both IL-4 and IL-13 in the treatment of allergic asthma.  相似文献   

16.
Recombinant rat interleukin (IL)-5-induced prolongation of rat eosinophil survival in culture was inhibited in a concentration-dependent manner by the protein synthesis inhibitor cycloheximide, the DNA-dependent RNA synthesis inhibitor actinomycin D, and the tyrosine kinase inhibitor herbimycin A when examined 96 h after incubation. The MEK-1 inhibitor PD98059 inhibited IL-5-induced phosphorylation of both p44 and p42 MAP kinases, but the IL-5-induced prolongation of eosinophil survival was not inhibited. In contrast, the JAK2 inhibitor AG490 inhibited the IL-5-induced prolongation of eosinophil survival. Treatment of eosinophils with IL-5 resulted in phosphorylation of STAT5 but not STAT1, and the IL-5-induced phosphorylation of STAT5 was inhibited by AG490. These findings suggest that the activation of JAK2 tyrosine kinase and protein synthesis are required for the prolongation of rat eosinophil survival induced by recombinant rat IL-5. STAT5 phosphorylation might also participate in the IL-5-induced survival of rat eosinophils.  相似文献   

17.
18.
Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.  相似文献   

19.
20.
IL-12 is a macrophage-derived cytokine that induces proliferation, cytokine production, and cytotoxic activity of T and NK cells. Signaling through its receptor, IL-12 induces these cellular responses by tyrosine phosphorylation and activation of Janus kinase-2 (Jak-2), Tyk-2, Stat3, and Stat4. We have used tyrphostin B42 (AG490), a Jak-2 inhibitor, to determine the role of Jak-2 kinase in IL-12 signaling and IL-12-induced T cell functions. Treatment of activated T cells with tyrphostin B42 inhibited the IL-12-induced tyrosine phosphorylation and activation of Jak-2 without affecting Tyk-2 kinase. In contrast, treatment with tyrphostin A1 inhibited the tyrosine phosphorylation of Tyk-2 but not that of Jak-2 kinase. Inhibition of either Jak-2 or Tyk-2 leads to a decrease in the IL-12-induced tyrosine phosphorylation of Stat3, but not of Stat4, protein. While inhibition of Jak-2 lead to programmed cell death, the inhibition of Jak-2 or Tyk-2 resulted a decrease in IFN-gamma production. We have further tested the in vivo effects of tyrphostin B42 in experimental allergic encephalomyelitis, a Th1 cell-mediated autoimmune disease. In vivo treatment with tyrphostin B42 decreased the proliferation and IFN-gamma production of neural Ag-specific T cells. Treatment of mice with tyrphostin B42 also reduced the incidence and severity of active and passive EAE. These results suggest that tyrphostin B42 prevents EAE by inhibiting IL-12 signaling and IL-12-mediated Th1 differentiation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号