首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Mr 57,000 single-chain chimeric plasminogen activator, K12G0S32, consisting of a variable region fragment (Fv) derived from the fibrin fragment D-dimer-specific monoclonal antibody MA-15C5 and of a 33-kDa (amino acids Ala132 to Leu411) recombinant single-chain urokinase-type plasminogen activator (rscu-PA-33k) was studied. K12G0S32, secreted by infected Spodoptera frugiperda insect cells at a rate of 1.5 micrograms/10(6) cells/48 h, was purified to homogeneity by ion-exchange chromatography and gel filtration. It was obtained essentially as a single-chain molecule with a Ka = 5.5 x 10(9) M-1 for immobilized fragment D-dimer, similar to that of MA-15C5. The specific activity of both its single-chain and two-chain forms on fibrin plates was 100,000 IU/mg of urokinase-type plasminogen activator (u-PA) equivalent. Activation of plasminogen by two-chain K12G0S32 obeyed Michaelis-Menten kinetics with Km = 2.9 +/- 0.6 microM and a k2 = 3.7 +/- 0.6 s-1 (mean +/- S.D.; n = 3), as compared to Km = 12 microM and k2 = 4.8 s-1 for rtcu-PA-32k (recombinant low Mr two-chain u-PA consisting of amino acids Leu144 to Leu411). Single-chain K12G0S32 induced a dose- and time-dependent lysis of a 125I-fibrin-labeled human plasma clot immersed in citrated human plasma; 50% lysis in 2 h was obtained with 0.70 +/- 0.07 micrograms/ml (mean +/- S.D.; n = 5), as compared with 8.8 +/- 0.1 micrograms/ml for rscu-PA-32k (recombinant low Mr single-chain u-PA consisting of amino acids Leu144 to Leu411) (mean +/- S.D.; n = 3). With two-chain K12G0S32, 50% clot lysis in 2 h required 0.25 +/- 0.03 micrograms/ml (mean +/- S.D.; n = 3), as compared with only 0.62 +/- 0.04 micrograms/ml (mean +/- S.D.; n = 2) for rtcu-PA-32k. These results indicate that low Mr single-chain u-PA can be targeted to a fibrin clot with a single-chain Fv fragment of a fibrin-specific antibody, resulting in a 13-fold increase of the fibrinolytic potency of the single-chain form and a 2.5-fold increase of the potency of the two-chain form.  相似文献   

2.
K12G0S32 is a 57-kDa recombinant single-chain chimeric plasminogen activator consisting of scFv-K12Go, a single-chain variable-region antigen-binding fragment (Fv) of the monoclonal antibody MA-15C5, which is specific for fragment D-dimer of human cross-linked fibrin, and a low-molecular-mass (33 kDa) urokinase-type plasminogen activator (u-PA-33k) containing amino acids Ala132-Leu411 (Holvoet, P., Laroche, Y., Lijnen, H. R., Van Cauwenberghe, R., Demarsin, E., Brouwers, E., Matthyssens, G. & Collen D. (1991) J. Biol. Chem. 266, 19717-19724). In addition, the Arg156-Phe157 thrombin-cleavage site in the u-PA moiety of K12G0S32 is removed by substitution of Phe157 with Asp. In the present study, the fibrinolytic potency of K12G0S32, determined in a system composed of a 125I-fibrin-labeled human plasma clot submerged in citrated plasma, was found to be only twofold higher than that of intact single-chain u-Pa (rscu-PA), but 17-fold higher than that of rscu-PA(M), a variant of rscu-PA in which the thrombin-cleavage site was removed by substitution of Phe157 with Asp. The fibrinolytic potency of K12G0S32T, with an intact thrombin-cleavage site, was 6-15-fold higher than that of rscu-PA. Conversion of 1 microM single-chain K12G0S32 or rscu-PA(M) into their two-chain derivatives with plasmin occurred at a rate of 1.0 +/- 0.15 nmol.min-1.nmol plasmin-1 and 0.85 +/- 0.074 nmol.min-1.nmol plasmin-1, compared to 14 +/- 2.3 nmol.min-1.nmol plasmin-1 and 18 +/- 2.6 nM.min-1.nmol plasmin-1 for K12G0S32T and rscu-PA, respectively. Purified fragment D-dimer of human cross-linked fibrin inhibited the fibrinolytic potency of single-chain K12G0S32T, but not of two-chain K12G0S32T, in a dose-dependent manner. Furthermore, the fibrinolytic potencies of two-chain K12G0S32 and K12G0S32T were not significantly higher than those of recombinant two-chain u-PA (rtcu-PA) or of rtcu-PA(M). These findings suggest that the 59-fold increase in fibrinolytic potency of K12G0S32T, relative to that of rscu-PA(M), is due both to targeting of the activator to the clot via the single-chain Fv fragment (sixfold increase) and to a more efficient conversion of single-chain K12G0S32T to its two-chain derivative (eightfold increase). Thus, targeting to clots by means of fibrin-specific antibodies results in a significant increase of the fibrinolytic potency of single-chain but not of two-chain u-PA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Equimolar mixtures of recombinant single chain urokinase-type plasminogen activator (rscu-PA) and a murine monoclonal antibody (MA-15C5) directed against fragment-D dimer of human cross-linked fibrin were conjugated, using the cross-linking agent N-succinimidyl 3-(2-pyridyldithio)propionate (PySSProSu). The conjugate (rscu-PA/MA-15C5), purified by immunoadsorption on a urokinase antibody and affinity chromatography on fibrin fragment-D dimer with a yield of 42 +/- 15% (mean +/- SD, n = 3), contained an average of 1.2 +/- 0.3 IgG molecules/rscu-PA molecule. On non-reduced SDS/PAGE it migrated as a main band with apparent Mr of 200,000. Specific amidolytic activities expressed/mass of u-PA were less than 250 IU/mg for rscu-PA/MA-15C5 and rscu-PA, 140,000 +/- 13,000 IU/mg and 100,000 +/- 17,000 IU/mg for their plasmin-generated two chain derivatives rtcu-PA/MA-15C5 and rtcu-PA respectively. Specific activities on fibrin plates were 100,000 +/- 24,000 IU/mg and 130,000 +/- 49,000 IU/mg for rscu-PA/MA-15C5 and rtcu-PA/MA-15C5 respectively, as compared to 180,000 +/- 15,000 IU/mg for both rscu-PA and rtcu-PA. Activation of plasminogen with rscu-PA/MA-15C5 (Km = 0.37 +/- 0.16 microM, k2 = 0.0063 +/- 0.0030 s-1 or rtcu-PA/MA-15C5 (Km = 19 +/- 3.0 microM, k2 = 2.0 +/- 0.10 s-1) in purified systems followed Michaelis-Menten kinetics with Km and k2 values comparable to those of rscu-PA and rtcu-PA. In an in vitro system composed of a 125I-fibrin-labeled whole human plasma clot immersed in citrated human plasma, dose- and time-dependent lysis was obtained; 50% lysis in 2 h required 1.4 microgram/ml of rscu-PA or 0.33 microgram/ml of rtcu-PA, but only 0.22 microgram u-PA/ml of rscu-PA/MA-15C5 or 0.15 microgram u-PA/ml of rtcu-PA/MA-15C5. Addition of purified fragment-D dimer reversed the increased fibrinolytic potency of rscu-PA/MA-15C5 in a concentration-dependent way (50% inhibition at 7.2 micrograms fragment-D dimer/ml). Thus, conjugation of u-PA moieties with the fibrin-specific antibody MA-15C5 targets the plasminogen activator to the clot, resulting in a significant increase of their fibrinolytic potencies as compared to their unconjugated counterparts: 6.4-fold for rscu-PA and 2.2-fold for rtcu-PA.  相似文献   

4.
人工合成了血纤蛋白粘附肽基因,构建了粘附肽与低分子量单链尿激酶cDNA的融合基因,在大肠杆菌中表达了融合基因。融合基因表达产物的抗原性和天然尿激酶相同,并具有尿激酶的溶纤活性和粘附肽的抗纤维蛋白单体聚合的功能。  相似文献   

5.
A recombinant chimeric plasminogen activator (GHRP-scu-PA-32K), consisting of the tetrapeptide Gly-His-Arg-Pro fused to the N-terminus of the low-molecular single-chain urokinase-type plasminogen activator (Leu144-Leu411), was produced by expression in CHO cells. The stable expression cell line was selected for large-scale expression. The product was purified by antibody-Sepharose affinity chromatography with a recovery of 67%. The apparent molecular weight of purified GHRP-scu-PA-32K was 33 kDa according to SDS-PAGE. Its specific activity was 150000 IU/mg protein according to fibrin plate determination. The conversion of single-chain to two-chain molecules mediated by plasmin was comparable for GHRP-scu-PA-32K (K(m)=4.9 microM, k(2)=0.35 s(-1)) and scu-PA-32K. The activation of plasminogen by GHRP-scu-PA-32K (K(m)=1.02 microM, k(2)=0.0028 s(-1)) was also similar to that of scu-PA-32K. The fibrin binding of GHRP-scu-PA-32K was 2.5 times higher than that of scu-PA-32K at a fibrin concentration of 3.2 mg/ml. In contrast to scu-PA-32K in vitro 125I-fibrin-labeled plasma clot lysis, GHRP-scu-PA had a higher thrombolytic potency, whereas it depleted less fibrinogen in plasma. These results show that GHRP-scu-PA-32K as expected is a potential thrombolytic agent.  相似文献   

6.
The cDNA encoding a low Mr derivative (residues 144-411) of human single-chain urokinase-type plasminogen activator was cloned, the recombinant low Mr single-chain urokinase-type plasminogen activator (rscu-PA-32k) was expressed in Chinese hamster ovary cells, and the translation product was purified to homogeneity from conditioned cell culture medium. rscu-PA-32k is very similar to intact recombinant single-chain urokinase-type plasminogen activator in terms of its very low activity (120 IU/mg) on a chromogenic substrate for urokinase (pyroglutamylglycylarginine p-nitroanilide), its plasminogen-dependent fibrinolytic activity on fibrin plates (specific activity = 170,000 IU/mg), its plasminogen activating potential, and the lack of specific binding to fibrin. In a rabbit jugular vein thrombosis model, comparable thrombolysis was obtained with rscu-PA-32k as compared to low molecular weight two-chain urokinase (50% lysis at 2.1 and 1.6 mg/kg infused over 4 h). Thrombolysis was associated with much less extensive systemic fibrinogen breakdown with rscu-PA-32k than with two-chain urokinase (residual fibrinogen at 50% lysis of 71 and 10%, respectively). It is concluded that the functional properties of rscu-PA-32k, expressed with a high efficiency, are similar to those of its previously characterized natural counterpart.  相似文献   

7.
A low Mr form (Mr 32,000) of single-chain urokinase-type plasminogen activator (scu-PA) was isolated from conditioned culture medium of a human lung adenocarcinoma cell line, CALU-3 (ATCC, HTB-55). The purified material (scu-PA-32k) consists of a single polypeptide chain and is immunologically similar to Mr 33,000 urokinase. Its NH2-terminal sequence is identical to that beginning at Leu-144 of Mr 54,000 urokinase. Whereas low Mr urokinase is derived from mature Mr 54,000 scu-PA by limited hydrolysis by plasmin first of the Lys-158-Ile-159 peptide bond and then of the Lys-136-Lys-137, scu-PA-32k is generated by specific hydrolysis of the Glu-143-Leu-144 peptide bond by an unidentified protease. scu-PA-32k resembles its Mr 54,000 scu-PA counterpart by its very low activity on chromogenic substrates for urokinase, by plasminogen-dependent fibrinolytic activity on fibrin plates, and by the lack of specific binding to fibrin. It activates plasminogen directly with high affinity, Km = 0.9 microM, but low turnover number, kcat = 0.0028 s-1. It is converted to fully active two-chain urokinase by plasmin with Km = 12 microM and kcat = 0.3 s-1. Like Mr 54,000 scu-PA, it causes significant lysis of a 125I-labeled fibrin clot in human plasma with relatively less fibrinogen breakdown as compared to urokinase. scu-PA-32k, which also has conserved fibrin specificity, represents a molecular variant which may be more suitable for large scale production as a fibrin-specific thrombolytic agent by recombinant DNA technology.  相似文献   

8.
Jiao J  Yu M  Ru B 《Biochimie》2001,83(11-12):1049-1055
A recombinant chimeric plasminogen activator (f beta/scuPA-32k), with a fibrin beta-chain peptide (comprising Gly15 through Arg 42) linked to the N-terminal of a low molecular mass (32 kDa) single-chain urokinase (scuPA-32k, comprising Leu144 through Leu 411) via a 50 amino acid linker sequence, was produced by expression the corresponding chimeric cDNA in Escherichia coli cells. After refolding in vitro, the chimeric protein was purified to homogeneity by zinc chelate-Sepharose chromatography, Sephacryl S200 chromatography and benzamidine-Sepharose chromatography in sequence. The apparent molecular mass was 36 kDa shown by SDS-PAGE analysis. The special activity was 87,000 IU/mg detected by fibrin plate determination. F beta/scuPA-32k could directly activate plasminogen following Michaelis-Menten kinetics with K(m) = 0.52 microM and k(2) = 0.0024 s(-1). Mediated by plasmin, the single-chain molecule could be converted to the active two-chain molecule. The chimeric protein had 3.3 times higher fibrin affinity than scuPA-32k in the fibrin concentration of 3.2 mg/mL, while the chimeric protein inhibited the fibrin clotting and platelet aggregation. F beta/scuPA-32k showed a higher thrombolytic potency in vitro plasma clot lysis than scuPA-32k and depleted less fibrinogen in plasma. These results showed that the chimeric protein had not only higher fibrinolytic activity but also anti-thrombus activity. Further evaluation of the thrombolytic potential in appropriate animal models is required.  相似文献   

9.
A hybrid human cDNA was constructed by splicing of a cDNA fragment of tissue-type plasminogen activator (t-PA), encoding 5'-untranslated, the pre-pro region and amino acids Ser1-Thr263, with a cDNA fragment of urokinase-type plasminogen activator (u-PA), encoding amino acids Leu144-Leu411. The cDNA fragments were obtained from full length t-PA cDNA, cloned from Bowes melanoma poly(A)+ mRNA, and from full length u-PA cDNA, cloned from CALU-3 lung adenocarcinoma poly(A)+ mRNA. The hybrid (t-PA/u-PA) cDNA was expressed in Chinese hamster ovary cells and the translation product purified from the conditioned cell culture media. On SDS-gel electrophoresis under reducing conditions, the protein migrated as a single band with approximate Mr 70,000. On immunoblotting, it reacted both with rabbit antisera raised against human t-PA and against human u-PA. The urokinase-like amidolytic activity of the protein was only 320 IU/mg but increased to 43,000 IU/mg after treatment with plasmin, which resulted in conversion of the single-chain molecule (t-PA/scu-PA) to a two-chain molecule (t-PA/tcu-PA). The specific activity of the protein on fibrin plates was 57,000 IU/mg by comparison with the International Reference Preparation for Urokinase. Both the single-chain hybrid (t-PA/scu-PA) and the two-chain plasmin derivative (t-PA/tcu-PA) bound specifically to fibrin, albeit more weakly than t-PA. The t-PA/tcu-PA hybrid had a higher selectivity for fibrin than tcu-PA, measured in a system composed of a whole human 125I-fibrin-labeled plasma clot immersed in human plasma. Both hybrid proteins activated plasminogen directly with Km = 1.5 microM and k2 = 0.0058 s-1 for t-PA/scu-PA and with Km = 80 microM and k2 = 5.6 s-1 for t-PA/tcu-PA. CNBr-digested fibrinogen stimulated the activation of plasminogen with t-PA/tcu-PA (Km = 0.20 microM and k2 = 1.2 s-1). It is concluded that these t-PA/u-PA hybrid proteins combine, at least to some extent, the fibrin-affinity of t-PA with the enzymatic properties of u-PA (either scu-PA or tcu-PA), which in some assays result in improved fibrin-mediated plasminogen activation.  相似文献   

10.
Highly purified plasminogen-activator inhibitors of type 1 (PAI-1) and type 2 (PAI-2), low-Mr form, were compared with respect to their kinetics of inhibition of tissue-type (t-PA) and urokinase-type plasminogen activator (u-PA). The time course of inhibition of plasminogen activator was studied under second-order or pseudo-first-order conditions. Residual enzyme activity was measured by the initial rate of hydrolysis of a chromogenic t-PA or u-PA substrate or by an immunosorbent assay for t-PA activity. PAI-1 rapidly reacted with single-chain t-PA as well as with two-chain forms of t-PA and u-PA. The second-order rate constant k for inhibition of single-chain t-PA (5.5 x 10(6) M-1 s-1) was about three times lower than k for inhibition of the two-chain activators. PAI-2 reacted slowly with single-chain t-PA, k = 4.6 x 10(3) M-1 s-1. The association rate was 26 times higher with two-chain t-PA and 435 times higher with two-chain u-PA. The k values for inhibition of single-chain t-PA, two-chain t-PA and two-chain u-PA were respectively, 1200, 150 and 8.5 times higher with PAI-1 than with PAI-2. The removal of the epidermal growth factor domain and the kringle domain from two-chain u-PA did not affect the kinetics of inhibition of the enzyme, suggesting that the C-terminal proteinase part of u-PA (B chain) is responsible for both the primary and the secondary interactions with PAI-1 and PAI-2. The k values for inhibition of single-chain t-PA and endogenous t-PA in plasma by PAI-1 or PAI-2 were identical indicating that t-PA in blood consists mainly in its single-chain form.  相似文献   

11.
It has been known that antibody-mediated plasminogen activator will be much more specific than its parent molecular. To get a cheaper and more effective medicine for thrombolytic therapy, we used SZ51, a GMP140 specific monoclonal antibody, and a truncated single-chain urokinase to construct a novel targeted plasminogen activator. PCR was used to amplify the region of VL and VH chains from Fab of SZ51, GMP140 specific monoclonal antibody, and scu-PA-32KD(leu144-leu411) from urokinase gene, respectively. Through suitable linker and appropriate restriction sites, these fragments were joined together and inserted into the expression vector, pET-5a, via NdeI site. The recombinant protein was expressed in BL21 (DE3) plyS, a kind of E. coli. It was shown in Western-blotting and ELISA that the protein could interact with the multiple cloned antibody of urokinase. After partial purification: dialysis, Sephadex G-100, dialysis and Phenyl-Sepharose fast flow, the product had a strong fibrinolytic activity through activating plasminogen on fibrin plate. The specific activity was about 47,000 IU/mg, corresponding to 80,000 IU/mg for the part of rscu-PA-32k, and the activity could be inhibited specifically by urokinase specific antibody. Activation of plasminogen by the chimera followed Michaelis-Menten kinetics, and the Km was 1.08 uM.  相似文献   

12.
Fibrin-directed monoclonal antibodies may be clinically useful for in vitro thrombus imaging and for the targeting of fibrinolytic agents to blood clots. One such murine monoclonal antibody, (mAb-15C5), raised against the fragment-D dimer epitope of cross-linked human fibrin, was previously characterized [Holvoet, P., Stassen, J. M., Hashimoto, Y., Spriggs, D., Devos, P. & Collen, D. (1989) Thromb. Haemostasis 61, 307-313] has recently been cloned and expressed [Vandamme, A.-M., Bulens, F., Bernar, H., Nelles, L., Lijnen, H. R. & Collen, D. (1990) Eur. J. Biochem. 192, 767-775]. In order to reduce the immunogenicity of the murine mAb-15C5 in man, we have now constructed a murine--human chimera of mAb-15C5, by substituting the cDNA sequences encoding the constant regions of the murine kappa light chain and gamma 1 heavy chain by the corresponding human genomic sequences. Both chimeric murine--human Ig chains were cloned into two separately selectable expression vectors, which were contransfected into Chinese hamster ovary (CHO) cells. Murine--human chimeric mAb-15C5 (mAb-15C5Hu) was purified from the conditioned medium of selected cell lines by chromatography on Zn-chelating Sepharose, protein-A-Sepharose and on insolubilized antigen (fragment-D dimer), with a final yield of 29 micrograms/l and a recovery of 33%. SDS/PAGE without reduction revealed a homogeneous band with a mobility similar to that of natural mAb-15C5, whereas after reduction, both the heavy and the light chains had slightly slower mobilities than their natural counterparts. Expression in the presence of tunicamycin suggested that the differences in gamma 1-chain mobility were due to different N-glycosylation patterns. Immunoblotting of proteins from SDS gels showed immunological reactivity of recombinant mAb-15C5Hu with goat anti-(human IgG) IgG and of recombinant and natural murine mAb-15C5 with goat anti-(mouse IgG) IgG. Competitive binding revealed a comparable affinity of recombinant murine mAb-15C5, recombinant mAb-15C5Hu and natural mAb-15C5, for fragment-D dimer, indicating that recombinant mAb-15C5Hu was obtained in a functionally intact form. Thus, mAb-15C5Hu may constitute a useful alternative to mAb-15C5 for in vivo use in man.  相似文献   

13.
Single-chain Mr 54,000 u-PA (scu-PA) was isolated, in the presence of aprotinin, from 3-liter batches of 60-h serum-free conditioned media obtained from subcultured (4-6th passage) human umbilical vein endothelial cells (HUVECs, approximately 1.8 x 10(9) cells). In the presence of heparin and endothelial cell growth factor, subcultured human umbilical vein endothelial cells produced u-PA proteins consisting of about 85-90% Mr 54,000 scu-PA and 10-15% two-chain Mr 54,000. The major scu-PA form was purified to homogeneity by ion-exchange chromatography on CM-Sephadex C-50, immunoadsorption on purified anti-u-PA IgG-Sepharose and affinity chromatography on p-amino-benzamidine-Agarose. Typically, about 8-10 micrograms of purified scu-PA protein (antigen/protein ratio = 1) was isolated from 3-liter batches of heparin-containing serum-free conditioned media with a yield of about 41% of the total starting u-PA antigen. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this purified u-PA protein showed a single Ag-stained band (nonreduced and reduced), with an estimated molecular weight of about 54,000, which exhibited very low fibrinolytic activity. Purified HUVEC-derived scu-PA did not incorporate 3H-labeled diisopropyl fluorophosphate. This protein did, however, exhibit very low amidolytic activity (approximately 5,000 IU/mg) on the u-PA-specific synthetic substrate pyroglu-Gly-Arg-p-nitroanilide, very low plasminogen-dependent fibrinolytic activity on 125I-labeled fibrin coated plates, and directly activated 125I-labeled plasminogen following Michaelis-Menten kinetics with high affinity, Km = 0.72 microM and low turnover number, kcat = 0.0005 s-1. Treatment with plasmin rapidly converted the HUVEC-derived scu-PA to the active two-chain Mr 54,000 u-PA form (approximately 90,000 IU/mg). Binding to fibrin clots, using antigen quantitation, indicated about 20, 10, and 90% binding for equimolar amounts of HUVEC-derived scu-PA, two-chain u-PA, and tissue plasminogen activator standards, respectively. These results indicate that subcultured HUVECs synthesize and secrete their u-PA protein as a single-chain molecule with low intrinsic amidolytic and fibrinolytic activity, high affinity for plasminogen and no specific affinity for fibrin. The role of scu-PA in endothelial cell-mediated vascular function has yet to be clearly defined.  相似文献   

14.
cDNA libraries in lambda phage were generated from the murine hybridoma secreting mAb-15C5, a monoclonal antibody directed against fragment-D dimer of crosslinked human fibrin [Holvoet et al. (1989) Thromb. Haemostasis 61, 307-313], and clones encoding fragments of the heavy (gamma 1) and the light (kappa) chain were isolated. The kappa-chain cDNA was reconstructed from two overlapping clones encoding 20 amino acids of signal sequence and the 214 amino acids of the mature protein chain. The gamma 1-chain cDNA was reconstructed from the mAb-15C5 kappa-chain signal sequence, the mAb-15C5 gamma 1 variable-domain coding sequence and murine gamma 1-gene and gamma 1-chain cDNA fragments encoding the constant domains. These cDNAs were expressed in Chinese hamster ovary cells, selected cell lines were scaled up in roller bottle culture, and recombinant mAb-15C5 was purified from the conditioned medium by chromatography on Zn-chelate - Sepharose, protein-A - Sepharose and insolubilized fragment-D dimer, with a yield of 50 micrograms/l and a recovery of 20%. SDS-gel electrophoresis without reduction revealed a homogeneous band, and after reduction a light-chain band with identical and a heavy-chained band with a somewhat slower mobility than that of the natural mAb-15C5. Competitive binding revealed a comparable affinity of natural and recombinant mAb-15C5 for fibrin fragment-D dimer. Thus recombinant mAb-15C5, obtained by co-expression of the reconstructed cDNAs of the kappa and gamma 1 chain in Chinese hamster ovary cells, has very similar properties to natural mAb-15C5. These recombinant mAb-15C5 cDNAs may be useful for the construction of a humanized monoclonal antibody for thrombus imaging, and for targeting of thrombolytic agents to fibrin.  相似文献   

15.
A recombinant single-chain molecule, scFv-K12G0, containing the variable domains of the monoclonal antibody MA-15C5, specific for fragment D-dimer of human cross-linked fibrin, was constructed and expressed in Spodoptera frugiperda, Sf9, insect cells. The Arg108 carboxyl-terminal amino acid of the variable domain of the light-chain of the antibody was connected through a synthetic Ala-Gly-Gln-Gly-Ser-Ser-Val peptide linker with the Gln1 amino-terminal amino acid of the variable domain of its heavy chain. scFv-K12G0 was secreted by the infected Sf9 cells at a rate of 10 micrograms/10(6) cells within 48 h, resulting in conditioned medium with a maximal concentration of 15 mg of scFv-K12G0/liter. The molecule, purified to homogeneity by ion exchange chromatography and gel filtration, migrated as a single Mr band on reduced sodium dodecyl sulfate-gel electrophoresis. It bound to immobilized fragment D-dimer with an affinity constant of 4.0 x 10(9) M-1 (2.0 x 10(10) M-1 for intact MA-15C5). Clearing of scFv-K12G0 from the circulation in rabbits occurred with an initial half-life (t1/2 alpha) of 10 min and a clearance of 5.1 ml min-1, as compared to 90 min and 210 ml min-1 for intact MA-15C5. Nephrectomy resulted in a prolongation of t1/2 alpha to 110 min, suggesting that the rapid clearance of scFv-K12G0 occurs primarily via the kidney, presumably by glomerular filtration. The results indicate that the single-chain recombinant molecule scFv-K12G0 is secreted in functionally intact form and suggest that it may be useful for targeting of radioisotopes or plasminogen activators to blood clots in vivo.  相似文献   

16.
免疫亲和层析法纯化单链尿激酶型纤溶酶原激活剂   总被引:1,自引:0,他引:1  
尿激酶原 (Pro urokinase ,pro UK) ,也称单链尿激酶型纤溶酶原激活剂 (Single chainurokinase typeplasminogenactivator,scu PA) ,与t PA一样是第二代溶栓药物。给药时 ,保持无活性的酶原状态 ,只激活被纤维蛋白吸附的纤溶酶原 ,而对游离的纤溶酶原没有作用 ,即只在血栓表面才能活化转变为双链尿激酶 (Two chainurokinase typeplasminogenactivator,tcu PA或UK) ,因而具有较高的特异性溶血栓作用[1 ] 。尿激酶原…  相似文献   

17.
Single-chain urokinase-type plasminogen activator (scu-PA) is converted to urokinase by hydrolysis of the Lys158-Ile159 peptide bond. Site-directed mutagenesis of Lys158 to Gly or Glu yields plasmin-resistant mutants with a 10-20-fold reduced catalytic efficiency for the activation of plasminogen [Nelles et al. (1987) J. Biol. Chem. 262, 5682-5689]. In the present study, we have further evaluated the enzymatic properties of derivatives of recombinant scu-PA (rscu-PA), produced by site-directed mutagenesis of Lys158, Ile159 or Ile160, in order to obtain additional information on the structure/function relations underlying the enzymatic properties of the single- and two-chain u-PA moieties. [Arg158]rscu-PA (rscu-PA with Lys158 substituted with Arg) appeared to be indistinguishable from wild-type rscu-PA with respect to plasminogen-activating potential (catalytic efficiency k2/Km = 0.21 mM-1 s-1 versus 0.64 mM-1 s-1), conversion to active two-chain urokinase by plasmin (k2/Km = 0.13 microM-1 s-1 versus 0.28 microM-1 s-1), as well as its specific activity (48,000 IU/mg as compared to 60,000 IU/mg) and its fibrinolytic potential in a plasma medium (50% lysis in 2 h with 2.8 micrograms/ml versus 2.1 micrograms/ml). [Pro159]rscu-PA (Ile159 substituted with Pro) and [Gly159]rscu-PA (Ile159 converted to Gly) are virtually inactive towards plasminogen (k2/Km less than 0.004 mM-1 s-1). They are however converted to inactive two-chain derivatives by plasmin following cleavage of the Arg156-Phe157 peptide bond in [Pro159]rscu-PA and of the Lys158-Gly159 peptide bond in [Gly159]rscu-PA. [Gly158,Lys160]rscu-PA (with Lys158 converted to Gly and Ile160 to Lys) has a low catalytic efficiency towards plasminogen both as a single-chain form (k2/Km = 0.012 mM-1 s-1) and as the two-chain derivative (k2/Km = 0.13 mM-1 s-1) generated by cleavage of both the Arg156-Phe157 and/or the Lys160-Gly161 peptide bonds by plasmin. These findings suggest that the enzymatic properties of rscu-PA are critically dependent on the amino acids in position 158 (requirement for Arg or Lys) and position 159 (requirement for Ile). Conversion of the basic amino acid in position 158 results in a 10-20-fold reduction of the catalytic efficiency of the single-chain molecule but yields a fully active two-chain derivative. The presence of Ile in position 159 is not only a primary determinant for the activity of the two-chain derivative, but also of the single-chain precursor. Cleavage of the Arg156-Phe157 or the Lys160-Gly161 peptide bonds by plasmin yields inactive two-chain derivatives.  相似文献   

18.
Two chimeric proteins have been constructed. One consists of four parts: a portion of the low molecular mass single-chain urokinase-type plasminogen activator (scu-PA-32K, residues 144-411), a 15-mer linker sequence, the C-terminal amino-acid sequence (residues 53-65) of hirudin (Hir), and an RGD sequence derived from the leech protein decorsin, i.e. scu-PA(32 k)-linker-Hir (residues 53-65)-RGD peptide. The other comprises two main segments: scu-PA(32 k) and hirudin into which RGDSP is inserted between its residues 33 and 34, i.e. hirudin (residues 1-33)-RGDSP-hirudin (residues 34-65)-scu-PA(32 k). These two chimeric genes were expressed in Escherichia coli, and the products were purified by Zn2+-chelating Sepharose 4B chromatography and benzamidine Sepharose 6B chromatography. Our results suggested that these two chimeric proteins not only had plasminogen-dependent fibrinolytic activity, but also possessed platelet aggregation inhibitory activity and antithrombin activity.  相似文献   

19.
The mechanism of the activation of plasminogen by single-chain urokinase-type plasminogen activator (single-chain u-PA, scu-PA) was studied using rscu-PA-Glu158, a recombinant plasmin-resistant mutant of human scu-PA obtained by site-specific mutagenesis of Lys158 to Glu, and rPlg-Ala740, a recombinant human plasminogen in which the catalytic site is destroyed by mutagenesis of the active-site Ser740 to Ala. Conversion of 125I-labeled single-chain plasminogen to two-chain plasmin was quantitated on reduced sodium dodecyl sulfate-gel electrophoresis combined with autoradiography and radioisotope counting of gels bands. The efficiencies of both rscu-PA-Glu158 and rscu-PA for the activation of rPlg-Ala740 and of natural plasminogen were comparable and were 250-500-fold lower than that of recombinant two-chain u-PA (rtcu-PA) for rscu-PA-Glu158 and 100-200-fold lower for rscu-PA. Pretreatment of rscu-PA-Glu158 or rscu-PA with excess alpha 2-antiplasmin, which efficiently neutralizes all contaminating rtcu-PA, did not significantly reduce the catalytic efficiency of these single-chain moieties, indicating that they have a low but significant intrinsic plasminogen activating potential. The low intrinsic catalytic efficiency of rscu-PA for the conversion of plasminogen to plasmin may be sufficient to generate trace amounts of plasmin, which may regulate plasminogen activation by converting poorly active rscu-PA to very active rtcu-PA.  相似文献   

20.
Thrombin converts single-chain urokinase-type plasminogen activator (scu-PA) to an inactive two-chain derivative (thrombin-derived tcu-PA) by hydrolysis of the Arg-156--Phe-157 peptide bond. In the present study, we show that inactive thrombin-derived tcu-PA (specific activity 1000 IU/mg) can be converted with plasmin to active two-chain urokinase-type plasminogen activator (specific activity 43,000 IU/mg) by hydrolysis of the Lys-158--Ile-159 peptide bond. This conversion follows Michaelis-Menten kinetics with a Michaelis constant Km of 37 microM and a catalytic rate constant k2 of 0.013 s-1. The catalytic efficiency (k2/Km) for the activation of thrombin-derived tcu-PA by plasmin is about 500-fold lower than that for the conversion of intact scu-PA to tcu-PA. tcu-PA, generated by plasmin treatment of thrombin-derived tcu-PA, has similar properties to tcu-PA obtained by digestion of intact scu-PA with plasmin (plasmin-derived tcu-PA); its plasminogen activating potential and fibrinolytic activity in an in vitro plasma clot lysis system appear to be unaltered. These observations confirm that the structure of the NH2-terminal region of the B chain of u-PA is an important determinant for its enzymatic activity, whereas that of the COOH-terminal region of the A chain is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号