首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection.  相似文献   

2.
Infection with West Nile virus (WNV) causes fatal encephalitis more frequently in immunocompromised humans than in those with a healthy immune system. Although a complete understanding of this increased risk remains unclear, experiments with mice have begun to define how different components of the adaptive and innate immune response function to limit infection. Previously, we demonstrated that components of humoral immunity, particularly immunoglobulin M (IgM) and IgG, have critical roles in preventing dissemination of WNV infection to the central nervous system. In this study, we addressed the function of CD8(+) T cells in controlling WNV infection. Mice that lacked CD8(+) T cells or classical class Ia major histocompatibility complex (MHC) antigens had higher central nervous system viral burdens and increased mortality rates after infection with a low-passage-number WNV isolate. In contrast, an absence of CD8(+) T cells had no effect on the qualitative or quantitative antibody response and did not alter the kinetics or magnitude of viremia. In the subset of CD8(+)-T-cell-deficient mice that survived initial WNV challenge, infectious virus was recovered from central nervous system compartments for several weeks. Primary or memory CD8(+) T cells that were generated in vivo efficiently killed target cells that displayed WNV antigens in a class I MHC-restricted manner. Collectively, our experiments suggest that, while specific antibody is responsible for terminating viremia, CD8(+) T cells have an important function in clearing infection from tissues and preventing viral persistence.  相似文献   

3.
West Nile virus (WNV) is a re-emerging pathogen responsible for fatal outbreaks of meningoencephalitis in humans. Recent research using a mouse model of infection has indicated that specific chemokines and chemokine receptors help mediate the host response to WNV acting by at least three mechanisms: control of early neutrophil recruitment to the infection site (Cxcr2), control of monocytosis in blood (Ccr2) and control of leukocyte movement from blood to brain (Cxcr4, Cxcr3, Cxcl10 and possibly Ccr5). CCR5 also appears to be important in human infection, since individuals genetically deficient in this receptor have increased risk of symptomatic disease once infected. These findings provide detailed insight into non-redundant chemokine roles in organ-specific leukocyte recruitment during infection, and emphasize the importance of the balance between pathogen control and immunopathology in determining overall clinical outcome.  相似文献   

4.
The existence of gammadelta T cells has been known for over 15 years, but their significance in innate immunity to virus infections has not been determined. We show here that gammadelta T cells are well suited to provide a rapid response to virus infection and demonstrate their role in innate resistance to vaccinia virus (VV) infection in both normal C57BL/6 and beta TCR knockout (KO) mice. VV-infected mice deficient in gammadelta T cells had significantly higher VV titers early postinfection (PI) and increased mortality when compared with control mice. There was a rapid and profound VV-induced increase in IFN-gamma-producing gammadelta T cells in the peritoneal cavity and spleen of VV-infected mice beginning as early as day 2 PI. This rapid response occurred in the absence of priming, as there was constitutively a significant frequency of VV-specific gammadelta T cells in the spleen in uninfected beta TCR KO mice, as demonstrated by limiting dilution assay. Also, like NK cells, another mediator of innate immunity to viruses, gammadelta T cells in uninfected beta TCR KO mice expressed constitutive cytolytic activity. This cytotoxicity was enhanced and included a broader range of targets after VV infection. VV-infected beta TCR KO mice cleared most of the virus by day 8 PI, the peak of the gammadelta T cell response, but thereafter the gammadelta T cell number declined and the virus recrudesced. Thus, gammadelta T cells can be mediators of innate immunity to viruses, having a significant impact on virus replication early in infection in the presence or absence of the adaptive immune response.  相似文献   

5.
West Nile virus (WNV), from the Flaviviridae family, is a re-emerging zoonotic pathogen of medical importance. In humans, WNV infection may cause life-threatening meningoencephalitis or long-term neurologic sequelae. WNV is transmitted by Culex spp. mosquitoes and both the arthropod vector and the mammalian host are equipped with antiviral innate immune mechanisms sharing a common phylogeny. As far as the current evidence is able to demonstrate, mosquitoes primarily rely on RNA interference, Toll, Imd and JAK-STAT signalling pathways for limiting viral infection, while mammals are provided with these and other more complex antiviral mechanisms involving antiviral effectors, inflammatory mediators, and cellular responses triggered by highly specialized pathogen detection mechanisms that often resemble their invertebrate ancestry. This mini-review summarizes our current understanding of how the innate immune systems of the vector and the mammalian host react to WNV infection and shape its pathogenesis.  相似文献   

6.
7.
In this paper, we analyse the interaction of different species of birds and mosquitoes on the dynamics of West Nile virus (WNV) infection. We study the different transmission efficiencies of the vectors and birds and the impact on the possible outbreaks. We show that the basic reproductive number is the weighted mean of the basic reproductive number of each species, weighted by the relative abundance of its population in the location. These results suggest a possible explanation of why there are no outbreaks of WNV in Mexico.  相似文献   

8.
In this paper, we analyse the interaction of different species of birds and mosquitoes on the dynamics of West Nile virus (WNV) infection. We study the different transmission efficiencies of the vectors and birds and the impact on the possible outbreaks. We show that the basic reproductive number is the weighted mean of the basic reproductive number of each species, weighted by the relative abundance of its population in the location. These results suggest a possible explanation of why there are no outbreaks of WNV in Mexico.  相似文献   

9.
10.
gammadelta T cells respond rapidly following West Nile virus (WNV) infection, limiting viremia and invasion of the central nervous system and thereby protecting the host from lethal encephalitis. Here, we investigated the role of two major subpopulations of peripheral gammadelta T cells, Vgamma1(+) and Vgamma4(+) cells, in host immunity against WNV infection. We found initially that aged mice were more susceptible to WNV infection than young mice. Following WNV challenge, Vgamma1(+) cells in young mice expanded significantly whereas Vgamma4(+) cells expanded modestly. In contrast, aged mice exhibited a slower and reduced response of Vgamma1(+) cells but maintained a higher content of Vgamma4(+) cells. Vgamma1(+) cells were the major gammadelta subset producing IFN-gamma during WNV infection. Mice depleted of Vgamma1(+) cells had an enhanced viremia and higher mortality to WNV encephalitis. Vgamma4(+) cells had a higher potential for producing tumor necrosis factor-alpha (TNF-alpha), a cytokine known to be involved in blood-brain barrier compromise and WNV entry into the brain. Depletion of Vgamma4(+) cells reduced TNF-alpha level in the periphery, accompanied by a decreased viral load in the brain and a lower mortality to WN encephalitis. These results suggest that Vgamma1(+) and Vgamma4(+) cells play distinct roles in protection and pathogenesis during WNV infection.  相似文献   

11.
12.
13.
T cell receptors consist either of an alpha-chain combined with a beta-chain or a gamma-chain combined with a delta-chain. alphabeta T cells constitute the majority of T cells in human blood throughout life. Flow cytometric analyses presented in this study, which focus on the representation of the developmental (naive and memory) subsets of gammadelta T cells, show by function and phenotype that this lineage contains both naive and memory cells. In addition, we show that the representation of naive T cells is higher among alphabeta than gammadelta T cells in adults and that the low frequency of naive gammadelta T cells in adults reflects ontological differences between the two major gammadelta subsets, which are distinguished by expression of Vdelta1 vs Vdelta2 delta-chains. Vdelta1 cells, which mirror alphabeta cells with respect to naive representation, predominate during fetal and early life, but represent the minority of gammadelta cells in healthy adults. In contrast, Vdelta2 cells, which constitute the majority of adult gammadelta cells, show lower frequencies of naive cells than Vdelta1 early in life and show vanishingly small naive frequencies in adults. In essence, nearly all naive Vdelta2 cells disappear from blood by 1 year of life. Importantly, even in children less than 1 year old, most of the nonnaive Vdelta2 cells stain for perforin and produce IFN-gamma after short-term in vitro stimulation. This represents the earliest immunological maturation of any lymphocyte compartment in humans and most likely indicates the importance of these cells in controlling pathology due to common environmental challenges.  相似文献   

14.
Random heterocopolymers of glutamic acid and tyrosine (pEY) evoke strong, genetically controlled immune responses in certain mouse strains. We found that pE50Y50 also stimulated polyclonal proliferation of normal gamma delta, but not alpha beta, T cells. Proliferation of gamma delta T cells did not require prior immunization with this Ag nor the presence of alpha beta T cells, but was enhanced by IL-2. The gamma delta T cell response proceeded in the absence of accessory cells, MHC class II, beta 2-microglobulin, or TAP-1, suggesting that Ag presentation by MHC class I/II molecules and peptide processing are not required. Among normal splenocytes, as with gamma delta T cell hybridomas, the response was strongest with V gamma 1+ gamma delta T cells, and in comparison with related polypeptides, pE50Y50 provided the strongest stimulus for these cells. TCR gene transfer into a TCR-deficient alpha beta T cell showed that besides the TCR, no other components unique to gamma delta T cells are needed. Furthermore, interactions between only the T cells and pE50Y50 were sufficient to bring about the response. Thus, pE50Y50 elicited a response distinct from those of T cells to processed/presented peptides or superantigens, consistent with a mechanism of Ig-like ligand recognition of gamma delta T cells. Direct stimulation by ligands resembling pE50Y50 may thus selectively evoke contributions of gamma delta T cells to the host response.  相似文献   

15.
Wang Y  Lobigs M  Lee E  Müllbacher A 《Journal of virology》2003,77(24):13323-13334
C57BL/6J mice infected intravenously with the Sarafend strain of West Nile virus (WNV) develop a characteristic central nervous system (CNS) disease, including an acute inflammatory reaction. Dose response studies indicate two distinct kinetics of mortality. At high doses of infection (10(8) PFU), direct infection of the brain occurred within 24 h, resulting in 100% mortality with a 6-day mean survival time (MST), and there was minimal destruction of neural tissue. A low dose (10(3) PFU) of infection resulted in 27% mortality (MST, 11 days), and virus could be detected in the CNS 7 days postinfection (p.i.). Virus was present in the hypogastric lymph nodes and spleens at days 4 to 7 p.i. Histology of the brains revealed neuronal degeneration and inflammation within leptomeninges and brain parenchyma. Inflammatory cell infiltration was detectable in brains from day 4 p.i. onward in the high-dose group and from day 7 p.i. in the low-dose group, with the severity of infiltration increasing over time. The cellular infiltrates in brain consisted predominantly of CD8(+), but not CD4(+), T cells. CD8(+) T cells in the brain and the spleen expressed the activation markers CD69 early and expressed CD25 at later time points. CD8(+) T-cell-deficient mice infected with 10(3) PFU of WNV showed increased mortalities but prolonged MST and early infection of the CNS compared to wild-type mice. Using high doses of virus in CD8-deficient mice leads to increased survival. These results provide evidence that CD8(+) T cells are involved in both recovery and immunopathology in WNV infection.  相似文献   

16.
West Nile virus (WNV) has spread throughout the United States and Canada and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to acute flaccid paralysis and lethal encephalitis. No therapy or vaccine is currently approved for use in humans. Using high-throughput screening assays that included a luciferase expressing WNV subgenomic replicon and an NS1 capture enzyme-linked immunosorbent assay, we evaluated a chemical library of over 80,000 compounds for their capacity to inhibit WNV replication. We identified 10 compounds with strong inhibitory activity against genetically diverse WNV and Kunjin virus isolates. Many of the inhibitory compounds belonged to a chemical family of secondary sulfonamides and have not been described previously to inhibit WNV or other related or unrelated viruses. Several of these compounds inhibited WNV infection in the submicromolar range, had selectivity indices of greater than 10, and inhibited replication of other flaviviruses, including dengue and yellow fever viruses. One of the most promising compounds, AP30451, specifically blocked translation of a yellow fever virus replicon but not a Sindbis virus replicon or an internal ribosome entry site containing mRNA. Overall, these compounds comprise a novel class of promising inhibitors for therapy against WNV and other flavivirus infections in humans.  相似文献   

17.
18.
Richard Boismenu  Wendy L Havran 《Genome biology》2001,2(11):reviews1031.1-reviews10314
Epithelial tissues house γδ T cells, which are important for the mucosal immune system and may be involved in controlling malignancies, infections and inflammation. Whole-genome gene-expression analysis provides a new way to study the signals required for the activation of γδ T cells, their mode of action and relationships among cells of the mucosal immune system.  相似文献   

19.
Injury to neurons after West Nile virus (WNV) infection is believed to occur because of viral and host immune-mediated effects. Previously, we demonstrated that CD8+ T cells are required for the resolution of WNV infection in the central nervous system (CNS). CD8+ T cells can control infection by producing antiviral cytokines (e.g., gamma interferon or tumor necrosis factor alpha) or by triggering death of infected cells through perforin- or Fas ligand-dependent pathways. Here, we directly evaluated the role of perforin in controlling infection of a lineage I New York isolate of WNV in mice. A genetic deficiency of perforin molecules resulted in higher viral burden in the CNS and increased mortality after WNV infection. In the few perforin-deficient mice that survived initial challenge, viral persistence was observed in the CNS for several weeks. CD8+ T cells required perforin to control WNV infection as adoptive transfer of WNV-primed wild-type but not perforin-deficient CD8+ T cells greatly reduced infection in the brain and spinal cord and enhanced survival of CD8-deficient mice. Analogous results were obtained when wild-type or perforin-deficient CD8+ T cells were added to congenic primary cortical neuron cultures. Taken together, our data suggest that despite the risk of immunopathogenesis, CD8+ T cells use a perforin-dependent mechanism to clear WNV from infected neurons.  相似文献   

20.
Populations of greater sage-grouse (Centrocercus urophasianus) have declined 45-80% in North America since 1950. Although much of this decline has been attributed to habitat loss, recent field studies have indicated that West Nile virus (WNV) has had a significant negative impact on local populations of grouse. We confirm the susceptibility of greater sage-grouse to WNV infection in laboratory experimental studies. Grouse were challenged by subcutaneous injection of WNV (10(3.2) plaque-forming units [PFUs]). All grouse died within 6 days of infection. The Kaplan-Meier estimate for 50% survival was 4.5 days. Mean peak viremia for nonvaccinated birds was 10(6.4) PFUs/ml (+/-10(0.2) PFUs/ml, standard error of the mean [SEM]). Virus was shed cloacally and orally. Four of the five vaccinated grouse died, but survival time was increased (50% survival=9.5 days), with 1 grouse surviving to the end-point of the experiment (14 days) with no signs of illness. Mean peak viremia for the vaccinated birds was 10(2.3) PFUs/ml (+/-10(0.6) PFUs/ml, SEM). Two birds cleared the virus from their blood before death or euthanasia. These data emphasize the high susceptibility of greater sage-grouse to infection with WNV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号