首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four bacterial strains (CA26, CA28, CA37, and CA45), which all were able to use aniline, 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) as sole sources of carbon, nitrogen and energy, were isolated after enrichment in aerated soil columns and identified as Pseudomonas acidovorans strains. In addition strains CA26 and CA45 were able to degrade 2-chloroaniline (2-CA) at very low rates. At 25°C strain CA28 was grown on aniline and 3-CA with generation times of 3.0 and 7.7 h, respectively, and exhibited complete mineralization of these substrates in degradation rates of 2.25 mmol aniline and 1.63 mmol 3-CA g-1 of biomass per hour, respectively. Degradation of 4-CA occurred at 1.54 mmol 4-CA g-1 of biomass per hour and a generation time of 18.7 h but, in contrast, was not complete due to formation of minor amounts of chlorohydroxymuconic semialdehyde, a meta-cleavage product of 4-chlorocatechol. The initial attack on the substrate, the formation of corresponding chlorocatechols from 3-CA and 4-CA, was found to be the rate-limiting degradation step. Evidence for two different aniline-oxygenase systems in strain CA28 with distinct activity pattern on chlorinated and nonsubstituted anilines was demonstrated by oxygen uptake rate experiments with aniline and chloroaniline pregrown cells. Further degradation was shown to be initialized by catechol dioxygenases.Non-standard abbreviations CA chloroaniline - DCA dichloroaniline - ECM enrichment and cultivation medium - CFU colony forming unit  相似文献   

2.
2-, 3-, and 4-chloroaniline degrading bacteria were obtained by natural genetic exchange between an aniline or toluidine degrading Pseudomonas strain and the chlorocatechol assimilating Pseudomonas sp. B13. Hybrid organisms were isolated through cocultivation of the parent strains in the chemostat as well as through conjugation on solid media in presence of chloroanilines as the selective substrates. Biochemical analysis of the gene products in the hybrid strains clearly showed that the genes coding for the aniline dioxygenase or the genes for the chlorocatechol assimilatory sequence had been transferred.  相似文献   

3.
The microbial degradation of 2-chloro-, 3-chloro-, 4-chloro-, and 3,4-dichloroaniline was examined as single compounds as well as a mixture in soil slurries. At 30°C the degradation of chloroanilines by indigenous soil populations in soil slurries was observed when soil slurry was freshly contaminated or precontaminated to allow binding of chloroanilines to the soil matrix. Within 6 weeks, 3-chloro- and 3,4-dichloroaniline (each 2 mm) were degraded more rapidly (about 50% chloride elimination) than 4-chloro- and 2-chloroaniline, due to stronger adsorption of 4-chloroaniline and greater resistance of 2-chloroaniline. The addition of various supplements such as buffer, mineral salts and acetate only slightly influenced the degradation of chloroanilines by the indigenous soil populations. The mineralization was drastically enhanced when laboratory-selected chloroaniline-degraders (8·106 cells/g) such as Pseudomonas acidovorans strain BN3.1 were supplemented to the soil slurries so that complete elimination of chloride from the chloroanilines occurred within 10 days. Correspondence to: F. R. Brunsbach  相似文献   

4.
Summary Pseudomonas multivorans strain An 1 was isolated from forest soil after enrichment in a medium containing 0.1% aniline as the sole source of carbon and energy. Increasing aniline concentrations increasingly inhibited bacterial growth. At pH 7, aniline concentrations greater than 16mM were toxic enough to completely arrest growth. The optimal pH for growth on aniline was 6.5.On binary mixtures of aniline and additional carbon sources, diauxic growth was observed. The addition carbon sources caused various degrees of repression of the aniline catabolizing enzyme system. The fastest induction of this system occurred at pH 4, suggesting that protonization of the aniline molecule is crucial.  相似文献   

5.
Pseudomonas cepacia strain CMA1, which was isolated from soil, utilized 3-chloro-4-methylaniline (3C4MA) in concentrations up to 1.4 mm (0.2 g·l–1) as the sole source of carbon, nitrogen, and energy. In addition, 3-chloroaniline, 4-chloroaniline and phenol, but not aniline or methylanilines, were degraded by strain CMA1. Biodegradation of the anilines was coupled to the liberation of ammonium and chloride. The broad specificities of the aniline- and catechol-oxidizing enzymes were demonstrated in oxygen uptake experiments, which in addition showed higher activities for ring-cleaving than for aniline-oxidizing enzymes. Two ring-cleaving catechol 1,2-dioxygenases, which were induced selectively after growth on 3C4MA (pyrocatechase type II) and phenol (pyrocatechase type I), respectively, were discerned after partial purification by DEAE-cellulose chromatography. Correspondence to: F. Streichsbier  相似文献   

6.
During degradation of aniline and 3-chloroaniline, respectively, by Pseudomonas acidovorans CA28, selective induction of two catechol 1,2-dioxygenases (C12O) was observed. C12O I activity was the sole ring-cleaving enzyme detectable in cell-free extracts after growth on aniline, while C12O II was exclusively found after growth on 3-chloroaniline. Both enzymes were clearly differentiated by their elution behaviour on DEAE-cellulose and their substrate specificities. For C12O I high activity was demonstrable only with unsubstituted catechol, while C12O II showed preference for and high affinity towards chlorinated catechols. Therefore, evidence of different ortho-cleavage enzymes in Pseudomonas acidovorans CA28 involved in aniline and 3-chloroaniline metabolism, respectively, is indicated.  相似文献   

7.
Various organic compounds were tested for their ability to stimulate degradation of monochloroanilines by aniline-grown cells ofRhodocuccus sp. An 117 in 0.1 M phosphate buffer, pH 6.9. Among them, glucose proved to be the most effective. In its presence both 2- and 3-chloroaniline were degraded with a transient accumulation of 3- and 4-chlorocatechnol, respectively. The turnover rates were 43 and 57% compared with the unsubstituted aniline, whereas in the case of 4-chloroaniline the rates did not exceed 5%. Aniline, when used as the additional carbon source, stimulated 3-chloroaniline degradation. With the exception of a certain initial delay in removal of the monochloroaniline, the respective kinetics resembled those seen with glucose as the cosubstrate. Evidence is presented that the enzymes involved in monochloroaniline turnover were identical with those responsible for aniline catabolism. The results obtained suggest that the cometabolic effect of glucose was due to certain products derived from the metabolism of the cosubstrate. The molar ratio between the amount of glucose added, on the one hand, and the amount of 2- or 3-chloroaniline converted, on the other hand, was found to be 0.4–0.5∶1.0.  相似文献   

8.
Pseudomonas strain K1 is a gram-negative rod which grows aerobically on minimal media containing aniline with a doubling time of 2 h at 30°C. The half-saturation parameter for aniline metabolism by aniline-grown cells was 3.8 μmol · liter−1. Concentrations of aniline as low as 50 nM were metabolized. Neither substituted anilines nor other aromatic compounds (other than aromatic amino acids) supported growth. Cells grew as fast on aniline as on nonaromatic substrates such as lactate. The aromatic ring was cleaved via the meta pathway. Catechol 2,3-oxygenase activity was induced by aniline, even in cultures containing alternative carbon sources such as lactate. Cultures grown on a mixture of aniline and lactate mineralized aniline in the presence of the second substrate. Lactate-grown cultures lacked catechol oxygenase activity, and resting cells from these cultures did not respire aniline. Resting cells from aniline-grown cultures exhibited high respiratory activity upon the addition of aniline or catechol, some activity with toluidine, and no activity after addition of a wide variety of other aromatic compounds, including dihydroxybenzylamine, chloroanilines, ethylanilines, aminophenols, aminobenzoates, and dihydroxybenzoates. Although substituted anilines were not metabolized, 3-or 4-chloroaniline did induce the enzymes for aniline oxidation.  相似文献   

9.
AParacoccus sp. which transforms aniline and different halogen-substituted derivatives under aerobic and anaerobic conditions was isolated from the soil. In experiments with14C-ring-labeled 4-chloroaniline, approximately 60% of the radioactive material disappeared from the growth medium after incubation under anaerobiosis within 48 hr, but under aerobic conditions no decrease of radioactivity in the growth medium was observed, although 4-chloroaniline was completely metabolized. Acetylation appears to constitute, especially under aerobic conditions, a major transformation mechanism by the bacterium, since almost 50% of the acetylated compound could be detected and identified if aniline, 2-, 3-, and 4-chloroaniline served as substrate. The formation of different metabolites under aerobic and anaerobic conditions clearly indicates the existence of two separate pathways in the metabolism of aniline compounds depending on the oxygen status of the environment.  相似文献   

10.
Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.  相似文献   

11.
Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.  相似文献   

12.
Summary Three strains, RHO1, R3 and B1, tentatively identified as a Pseudomonas sp., an Alcaligenes sp. and a Pseudomonas sp. which were able to use 1,4-dichlorobenzene as the sole carbon and energy source were isolated from water of the Rhine river and from the sewage plant at Leverkusen-Bürrig. A hybrid strain, WR1313, which uses chlorobenzene as the growth substrate, was obtained by mating the benzene-growing Pseudomonas putida strain F1 with strain B13, a Pseudomonas sp. degrading chlorocatechols. Further selection of this strain for growth on 1,4-dichlorobenzene allowed the isolation of strain WR1323. During growth on 1,4-dichlorobenzene the strains released stoichiometric amounts of chloride. The affinity of the organisms to 1,4-dichlorobenzene was measured with strain R3 showing a Ks value of 1.2 mg/l. Respiration data and enzyme activities in cell extracts as well as the isolation of 3,6-dichlorocatechol from the culture fluid are consistent with the degradation of 1,4-dichlorobenzene via 3,6-dichlorocatechol, 2,5-dichloro-cis,cis-muconate, 2-chloro-4-carboxymethylenebut-2-en-4-olide.  相似文献   

13.
4-Chloroaniline has been released into the environment due to extensive use in chemical industries and intensive agriculture; hence, it becomes one of the hazardous pollutants in the priority pollutant list. In this study, three gram-negative bacteria were enriched and isolated from agricultural soil as 4-chloroaniline-degrading bacteria. They were identified as Acinetobacter baumannii CA2, Pseudomonas putida CA16 and Klebsiella sp. CA17. They were able to utilize 4-chloroaniline as a sole carbon and nitrogen source without stimulation or cocultivation with aniline or another cosubstrate. The biodegradation in these bacteria was occurred via a modified ortho-cleavage pathway of which the activity of chlorocatechol 1, 2-dioxygenase was markedly induced. They grew well on 0.2-mM 4-chloroaniline exhibiting a 60-75% degradation efficiency and equimolar liberation of chloride. The isolates were able to survive in the presence of 4-chloroaniline at higher concentrations (up to 1.2 mM). 2-Chloroaniline, 3-chloroaniline and aniline, but not 3, 4-dichloroaniline, were also growth substrates for these isolates. The results of cosubstrate supplementation illustrated the suitable conditions of each isolate to improve growth rate and 4-chloroaniline biodegradation efficiency. These results suggest that these isolates have a potential use for bioremediation of the site contaminated with 4-chloroaniline.  相似文献   

14.
Pseudomonas cepacia P166 was able to metabolize all monochlorobiphenyls to the respective chlorobenzoates. Although they transiently accumulated, the chlorobenzoate degradation intermediates were further metabolized to chlorocatechols, which in turn were meta cleaved. 2- and 3-Chlorobiphenyl both produced 3-chlorocatechol, which was transformed to an acyl halide upon meta cleavage. 3-Chlorocatechol metabolism was toxic to the cells and impeded monochlorobiphenyl metabolism. In the case of 2-chlorobiphenyl, toxicity was manifested as a diminished growth rate, which nevertheless effected rapid substrate utilization. In the case of 3-chlorobiphenyl, which generates 3-chlorocatechol more rapidly than does 2-chlorobiphenyl, toxicity was manifested as a decrease in viable cells during substrate utilization. 4-Chlorobenzoate was transformed to 4-chlorocatechol, which was metabolized by a meta cleavage pathway leading to dehalogenation. Chloride release from 4-chlorocatechol metabolism, however, was slow and did not coincide with rapid 4-chlorocatechol turnover. Growth experiments with strain P166 on monochlorobiphenyls illustrated the difficulties of working with hydrophobic substrates that generate toxic intermediates. Turbidity could not be used to measure the growth of bacteria utilizing monochlorobiphenyls because high turbidities were routinely measured from cultures with very low viable-cell counts.  相似文献   

15.
4-Chroropyrocatechol is formed as a results of the oxidation of 2,5-dichlorobenzoate byPseudomonas stutzeri. 3-Chloro-cis,cis-muconic acid is the product of the oxidation of 4-chloropyrocatechol. Pyrocatechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, but not pyrocatechol 2,3-dioxygenase or protocatechuate 3,4-dioxygenase activities were found in cell-free extracts. Theortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catablic pathway for the degradation of 2,5-dichlorobenzoate by a newly isolated strain ofP. stutzeri was proposed.  相似文献   

16.
A Delftia tsuruhatensis strain capable of consuming aniline as the sole source of carbon, nitrogen, and energy at concentrations of up to 3200 mg/l was isolated from activated sludge of the sewage disposal plants of OAO Volzhskii Orgsintez. The strain grew on catechol and p-hydroxybenzoic acid but did not consume phenol, 2-aminophenol, 3-chloroaniline, 4-chloroaniline, 2,3-dichloroaniline, 2,4-dichloroaniline, 3,4-dichloroaniline, 2-nitroaniline, 2-chlorophenol, or aminobenzoate. Aniline is degraded by cleavage of the catechol aromatic ring at the ortho position. Cells were immobilized on polycaproamide fiber. It was shown that the strain degraded aniline at 1000 mg/l in a continuous process over a long period of time.  相似文献   

17.
Laccase-producing fungi were isolated from air, using selective media with a chromogenic substrate to indicate enzyme activity. The best laccase producer strain proved to be a Leptosphaerulina chartarum isolate. Laccase production was investigated in the presence of various inducers in different cultivation conditions. The extracellular laccase was purified for further investigations. SDS-PAGE showed that this laccase is a monomeric protein of 38 kDa molecular weight. The enzyme is active in the pH-range of 3.5–6, with an optimum at pH 3.8. It is active in the 10–60 °C temperature range, with an optimum at 40 °C. After 20 min incubation at temperatures above 70 °C the enzyme lost its activity. Degradation of seven aniline and phenol compounds (2,4-dichlorophenol; 2-methyl-4-chlorophenol; 3-chloroaniline; 4-chloroaniline; 2,6-dimethylaniline; 3,4-dichloroaniline and 3-chloro-4-methylaniline) was investigated, with or without guaiacol (2-methoxyphenol) as mediator molecule. Addition of a mediator to the system significantly increased the degradation levels. These results confirmed that the isolated laccase is able to convert these harmful xenobiotics at in vitro conditions.  相似文献   

18.
Peripheral metabolism was studied in the Pseudomonas putida 37cc transconjugant. In the strain grown on benzoate, pyrocatechase (PC) I with a low activity to chlorocatechols was induced, whereas PCII actively decomposing chlorocatechols was induced during its growth on 3-chlorobenzoic acid. The P. putida 37cc transconjugant grown on alpha-methylstyrene (MS) exerted the activity of both metapyrocatechase (MPC) and PC, whereas in the parent strain P. putida R-1 only MPC was involved in the degradation of alpha-MS. The substrate specificity of the enzymes involved in the ring cleavage by P. putida 37cc was compared to show that, apparently, MPC of the transconjugant was similar to this enzyme in the strain R-1 while PC decomposing chlorocatechols was similar to PC of the P. putida 87 donor. The regulation of the enzymes mediating the ring cleavage was studied in the parent strains and transconjugants.  相似文献   

19.
Dienelactone hydrolases (EC 3.1.1.45) have been shown to play an indispensable role in the degradation of chloroaromatic compounds via ortho-cleavage of chlorocatechols. We report on the purification of dienelactone hydrolase of the chlorophenol-utilizing strain Rhodococcus erythropolis 1CP to apparent homogeneity. Dienelactone hydrolase differed fron the corresponding enzymes of other chloroaromatic compound-catabolizing strains in being restricted to substrates with a cis-dienelactone structure. From the cis-dienelactone-hydrolyzing enzyme of a 4-fluorobenzoate-utilizing Burkholderia (Pseudomonas) cepacia strain, it differed considerably in properties such as pH optimum of activity, inhibition by p-chloromercuribenzoate, and amino acid composition. Thus, there is not necessarily a close relationship between substrate specificity and other properties of dienelactone hydrolases.  相似文献   

20.
A bacterial strain, AN3, which was able to use aniline or acetanilide as sole carbon, nitrogen and energy sources was isolated from activated sludge and identified as Delftiasp. AN3. This strain was capable of growing on concentrations of aniline up to 53.8 mM (5000 mg/l). Substituted anilines such as N-methylaniline, N, N-dimethylaniline, 2-methylaniline, 4-methylaniline, 2-chloroaniline, 3-chloroaniline, o-aminoaniline, m-aminoaniline, p-aminoaniline, and sulfanilic acid did not support the growth of strain AN3. The optimal temperature and pH for growth and degradation of aniline were 30 degrees C and 7.0, respectively. The activities of aniline dioxygenase, catechol 2,3-dioxygenase and other enzymes involved in aniline degradation were determined, and results indicated that all of them were inducible. The K (m) and V (max) of aniline dioxygenase were 0.29 mM and 0.043 mmol/mg protein/min, respectively. The K (m) and V (max) of catechol 2, 3-dioxygenase for catechol were 0.016 mM and 0.015 mmol/mg protein/min, respectively. Based on the results obtained, a pathway for the degradation of aniline by Delftiasp. AN3 was proposed. The importance of the strain to the operation of municipal wastewater treatment plants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号