首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outer membrane protein OmpA of Escherichia coli K-12 serves as a receptor for a number of T-even-like phages. We have isolated a series of ompA mutants which are resistant to such phages but which still produce the OmpA protein. None of the mutants was able to either irreversibly or reversibly bind the phage with which they had been selected. Also, the OmpA protein is required for the action of colicins K and L and for the stabilization of mating aggregates in conjugation. Conjugal proficiency was unaltered in all cases. Various degrees of colicin resistance was found; however, the resistance pattern did not correlate with the phage resistance pattern. DNA sequence analyses revealed that, in the mutants, the 325-residue OmpA protein had suffered the following alterations: Gly-65----Asp, Gly-65----Arg, Glu-68----Gly, Glu-68----Lys (two isolates), Gly-70----Asp (four isolates), Gly-70----Val, Ala-Asp-Thr-Lys-107----Ala-Lys (caused by a 6-base-pair deletion), Val-110----Asp, and Gly-154----Ser. These mutants exhibited a complex pattern of resistance-sensitivity to 14 different OmpA-specific phages, suggesting that they recognize different areas of the protein. In addition to the three clusters of mutational alterations around residues 68, 110, and 154, a site around residue 25 has been predicted to be involved in conjugation and in binding of a phage and a bacteriocin (R. Freudl, and S. T. Cole, Eur. J. Biochem, 134:497-502, 1983; G. Braun and S. T. Cole, Mol. Gen. Genet, in press). These four areas are regularly spaced, being about 40 residues apart from each other. A model is suggested in which the OmpA polypeptide repeatedly traverses the outer membrane in cross-beta structure, exposing the four areas to the outside.  相似文献   

2.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli. It serves as the receptor for several T-even-like phages and is required for the action of certain colicins and for the stabilization of mating aggregates in conjugation. We have isolated two mutant alleles of the cloned ompA gene which produce a protein that no longer functions as a phage receptor. Bacteria possessing the mutant proteins were unable to bind the phages, either reversibly or irreversibly. However, both proteins still functioned in conjugation, and one of them conferred colicin L sensitivity. DNA sequence analysis showed that the phage-resistant, colicin-sensitive phenotype exhibited by one mutant was due to the amino acid substitution Gly leads to Arg at position 70. The second mutant, which contained a tandem duplication, encodes a larger product with 8 additional amino acid residues, 7 of which are a repeat of the sequence between residues 57 and 63. In contrast to the wild-type OmpA protein, this derivative was partially digested by pronase when intact cells were treated with the enzyme. The protease removed 64 NH2-terminal residues, thereby indicating that this part of the protein is exposed to the outside. It is argued that the phage receptor site is most likely situated around residues 60 to 70 of the OmpA protein and that the alterations characterized have directly affected this site.  相似文献   

3.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli K-12. A model, in which this protein crosses the membrane eight times in an antiparallel beta-sheet conformation and in which regions around amino acids 25, 70, 110 and 154 are exposed at the cell surface, had been proposed. Linkers were inserted into the ompA gene with the result that OmpA proteins, carrying non-OmpA sequences between residues 153 and 154 or 160 and 162, were synthesized. Intact cells possessing these proteins were treated with proteases. Insertion of 15 residues between residues 153 and 154 made the protein sensitive to proteinase K and the sizes of the two cleavage products were those expected following proteolysis at the area of the insertion. Addition of at least 17 residues between residues 160 and 162 left the protein completely refractory to protease action. Thus, the former area is cell surface exposed while the latter area appears not to be. The insertions did not cause a decrease in the concentration of the hybrid proteins as compared to that of the OmpA protein, and in neither case was synthesis of the protein deleterious to cell growth. It is suggested that this method may serve to carry peptides of practical interest to the cell surface and that it can be used to probe surface-located regions of other membrane proteins.  相似文献   

4.
The T-even type Escherichia coli phage Ox2 recognizes the outer membrane protein OmpA as a receptor. This recognition is accomplished by the 266 residue protein 38, which is located at the free ends of the virion's long tail fibers. Host-range mutants had been isolated in three consecutive steps: Ox2----Ox2h5----Ox2h10----Ox2h12, with Ox2h12 recognizing the outer membrane protein OmpC efficiently and having lost some affinity for OmpA. Protein 38 consists, in comparison with these proteins of other phages, of two constant and one contiguous array of four hypervariable regions; the alterations leading to Ox2h12 were all found within the latter area. Starting with Ox2h12, further host-range mutants could be isolated on strains resistant to the respective phage: Ox2h12----h12h1----h12h1.1----h12h1.11----h12 h1.111. It was found that Ox2h12h1.1 (and a derivative of Ox2h10, h10h4) probably uses, instead of OmpA or OmpC, yet another outer membrane protein, designated OmpX. Ox2h12h1.11 was obtained on a strain lacking OmpA, -C and -X. This phage could not grow on a mutant of E. coli B, possessing a lipopolysaccharide (LPS) with a defective core oligosaccharide; Ox2h12h1.111 was obtained from this strain. It turned out that the latter two mutants used LPS as a receptor, most likely via its glucose residues. Selection for resistance to them in E. coli B (ompA+, ompC-, ompX-) yielded exclusively LPS mutants, and in another strain, possessing OmpA, C and X, the majority of resistant mutants were of this type. Isolated LPS inactivated the mutant phages very well and was inactive towards Ox2h12. By recombining the genes of mutant phages into the genome of parental phages it could be shown that the phenotypes were associated with gene 38. All mutant alterations (mostly single amino acid substitutions) were found within the hypervariable regions of protein 38. In particular, a substitution leading to Ox2h12h1.11 (Arg170----Ser) had occurred at the same site that led to Ox2h10 (His170----Arg), which binds to OmpC in addition to OmpA. It is concluded that not only can protein 38 gain the ability to switch from a protein to a carbohydrate as a receptor but can do so using the same domain of the polypeptide.  相似文献   

5.
I Riede  M Degen    U Henning 《The EMBO journal》1985,4(9):2343-2346
T-Even type bacteriophages recognize their cellular receptors with the distal ends of their long tail fibers. The distal part of these fibers consists of a dimer of gene product (gp) 37. The assembly of this gp to a functional dimer requires the action of two other proteins, gp57 and gp38. Genes (g) 38 have been cloned from five T-even type phages which use the Escherichia coli outer membrane protein OmpA as a receptor. The phages used differ in their ability to infect a series of ompA mutants producing altered OmpA proteins, i.e., each phage has a specific host range for these mutants. The cloned genes 38 complemented g38 amber mutants of phage T2, which uses the outer membrane protein OmpF as a receptor. The complemented phages had become phenotypically OmpA-dependent and, with one exception, OmpF-independent, but regained the host range of T2 upon growth in a host lacking the cloned g38. The host range of the complemented phages, as determined on the ompA mutants, was identical to, similar to, or different from that of the phage, from which the cloned g38 originated. The results presented show that gp38 from one phage can phenotypically 'imprint', in a finely-tuned manner, a host range onto gp37 of another phage with a different host specificity. In view of the extreme diversity of host ranges observed, it is suggested that gp38 of T2 and of the OmpA-specific phages may remain attached to gp37 in the phage particle and in cooperation with gp37 determine the host range.  相似文献   

6.
The Escherichia coli K-12 outer membrane protein OmpA functions as the receptor for bacteriophage Ox2. We isolated a host range mutant of this phage which was able to grow on an Ox2-resistant ompA mutant producing an altered OmpA protein. From this mutant, Ox2h5, a second-step host range mutant was recovered which formed turbid plaques on a strain completely lacking the OmpA protein. From one of these mutants, Ox2h10, a third-step host range mutant, Ox2h12, was isolated which formed clear plaques on a strain missing the OmpA protein. Ox2h10 and Ox2h12 apparently were able to use both outer membrane proteins OmpA and OmpC as receptors. Whereas there two proteins are very different with respect to primary structures and functions, the OmpC protein is very closely related to another outer membrane protein, OmpF, which was not recognized by Ox2h10 or Ox2h12. An examination of the OmpC amino acid sequence, in the regions where it differs from that of OmpF, revealed that one region shares considerable homology with a region of the OmpA protein which most likely is required for phage Ox2 receptor activity.  相似文献   

7.
A novel Escherichia coli outer membrane protein A (OmpA) was discovered through a proteomic investigation of cell surface proteins. DNA polymorphisms were localized to regions encoding the protein's surface-exposed loops which are known phage receptor sites. Bacteriophage sensitivity testing indicated an association between bacteriophage resistance and isolates having the novel ompA allele.  相似文献   

8.
Pulse-chase experiments were performed to follow the export of the Escherichia coli outer membrane protein OmpA. Besides the pro-OmpA protein, which carries a 21-residue signal sequence, three species of ompA gene products were distinguishable. One probably represented an incomplete nascent chain, another the mature protein in the outer membrane, and the third, designated imp-OmpA (immature processed), a protein which was already processed but apparently was still associated with the plasma membrane. The pro- and imp-OmpA proteins could be characterized more fully by using a strain overproducing the ompA gene products; pro- and imp-OmpA accumulated in large amounts. It could be shown that the imp- and pro-OmpA proteins differ markedly in conformation from the OmpA protein. The imp-OmpA, but not the pro-OmpA, underwent a conformational change and gained phage receptor activity upon addition of lipopolysaccharide. Utilizing a difference in detergent solubility between the two polypeptides and employing immunoelectron microscopy, it could be demonstrated that the pro-OmpA protein accumulated in the cytoplasm while the imp-OmpA was present in the periplasmic space. The results suggest that the pro-OmpA protein, bound to the plasma membrane, is processed, and the resulting imp-OmpA, still associated with the plasma membrane, recognizes the lipid A moiety of the lipopolysaccharide. The resulting conformational change may then force the protein into the outer membrane.  相似文献   

9.
Selection was performed for resistance to a phage, Ox2, specific for the Escherichia coli outer membrane protein OmpA, under conditions which excluded recovery of ompA mutants. All mutants analyzed produced normal quantities of OmpA, which was also normally assembled in the outer membrane. They had become essentially resistant to OmpC and OmpF-specific phages and synthesized these outer membrane porins at much reduced rates. The inhibition of synthesis acted at the level of translation. This was due to the presence of lipopolysaccharides (LPS) with defective core oligosaccharides. Cerulenin blocks fatty acid synthesis and therefore that of LPS. It also inhibits synthesis of OmpC and OmpF but not of OmpA (C. Bocquet-Pagès, C. Lazdunski, and A. Lazdunski, Eur. J. Biochem. 118:105-111, 1981). In the presence of the antibiotic, OmpA synthesis and membrane incorporation remained unaffected at a time when OmpC and OmpF synthesis had almost ceased. The similarity of these results with those obtained with the mutants suggests that normal porin synthesis is not only interfered with by production of mutant LPS but also requires de novo synthesis of LPS. Since synthesis and assembly of OmpA into the outer membrane was not affected in the mutants or in the presence of cerulenin, association of this protein with LPS appears to occur with outer membrane-located LPS.  相似文献   

10.
A series of overlapping deletions has been constructed in the ompA gene which encodes the 325-residue Escherichia coli outer membrane protein OmpA. Immunoelectron microscopy showed that the OmpA fragments were either located in the periplasmic space or were associated with the outer membrane. Apparently an area between residues 154 and 180 is required for this association; all proteins missing this area were found to be periplasmic. The nature of this association remained unknown; no membrane-protected tryptic fragments could be identified for any of these polypeptides. Hybrid genes were constructed encoding parts of the periplasmic maltose binding protein and an area of the ompA gene coding for residues 154-274. The corresponding proteins were not localized to the outer membrane but remained attached to the outer face of the plasma membrane, possibly because the normal mechanism of release from this membrane was impaired. In the OmpA protein the conspicuous sequence Ala180-Pro-Ala-Pro-Ala-Pro-Ala-Pro187 exists. Frameshift mutants were constructed to eliminate this sequence. There was no effect on the incorporation of the mutant proteins into the outer membrane. Thus, this "hinge" region is not involved in sorting. A proposal suggesting the existence of a sorting signal common to several outer membrane proteins (Benson, S. A., Bremer, E., and Silhavy, T. J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 3830-3834) was subsequently rejected (Bosch, D., Leunissen, J., Verbakel, J., de Jong, M., van Erp, H., and Tommassen, J. (1986) J. Mol. Biol. 189, 449-455; Freudl, R., Schwarz, H., Klose, M., Movva, N. R., and Henning, U. (1985) EMBO J. 4, 3593-3598). Although it is not known whether or not the outer membrane association observed represents a step in the normal sorting mechanism, it is concluded that it remains an open question whether or not a sorting signal, as proposed originally, exists in outer membrane proteins.  相似文献   

11.
Abstract A hybrid gene has been constructed from the Escherichia coli and Shigella dysenteriae ompA genes. Its product differs from the E. coli OmpA protein only around amino acid 110. This substitution, resulting in the acquisition of a receptor site for bacteriocin 4–59 and loss of activity towards colicin L and phage K3, confirms the cell surface location of this region.  相似文献   

12.
The membrane part of the 325-residue outer membrane protein OmpA of Escherichia coli encompasses residues 1-177. This part is thought to cross the membrane eight times in antiparallel beta-strands, forming four loops of an amphipathic beta-barrel. With the aim of gaining some insight into the mechanism of sorting, i.e. the way the protein recognizes and assembles into its membrane, a set of point mutants in the ompA gene has been generated. Selection for toxicity of ompA expression following mutagenesis with sodium bisulfite yielded genes with multiple base pair substitutions, the majority of which resulted in amino acid substitutions in the membrane moiety of the protein. None of the altered proteins was blocked in membrane incorporation. A proline residue exists at or near each of the presumed turns at the inner side of the outer membrane. Using oligonucleotide-directed mutagenesis, each of them was replaced by a leucine residue which is thought to be a turn blocking residue. None of these proteins had lost the ability to be incorporated into the membrane. Apparently, leucine residues are tolerated at turns in this protein. To interfere with the formation of antiparallel beta-strands, four double mutants were prepared: ompA-ON3 (Ala11----Pro, Leu13----Pro), -ON4 (Ala11----Asp, Leu13----Pro), -ON5 (Gly160----Val, Leu162----Arg), and -ON6 (Leu164----Pro, Val166----Asp). The former three proteins and even quadruple mutants consisting of a combination of ompA-ON2 or -ON4 with -ON5 were not defective in membrane assembly. In contrast, the OmpA-ON6 protein was translocated across the plasma membrane but could not be incorporated into the outer membrane. It is concluded that at least one rather small area of the polypeptide is of crucial importance for the assembly of OmpA into the outer membrane.  相似文献   

13.
Expression of mutant ompA genes, encoding the 325 residue Escherichia coli outer membrane protein OmpA, caused an inhibition of synthesis of the structurally unrelated outer membrane porins OmpC and OmpF and of wild-type OmpA, but not of the periplasmic beta-lactamase. There was no accumulation of precursors of the target proteins and the inhibitory mechanism operated at the level of translation. So far only alterations around residue 45 of OmpA have been found to affect this phenomenon. Linkers were inserted between the codons for residues 45 and 46. A correlation between size and sequence of the resulting proteins and presence or absence of the inhibitory effect was not found, indicating that the added residues acted indirectly by altering the conformation of other parts of the mutant OmpA. To be effective, the altered polypeptides had to be channelled into the export pathway. Internal deletions in effector proteins, preventing incorporation into the membrane, abolished effector activity. The results suggest the existence of a periplasmic component that binds to OmpA prior to membrane assembly; impaired release of this factor from mutant OmpA proteins may trigger inhibition of translation. The factor could be a See B-type protein, keeping outer membrane proteins in a form compatible with membrane assembly.  相似文献   

14.
Abstract Three-dimensional structures of cytochrome P450 2B1 were modeled based on the crystallographic structure of P450(cam). The effect of the alignment, loop choice, and minimization with or without water was assessed. Although final models were similar in overall structure, the identity of active site residues depended upon the alignment. An example is Phe-206, which may or may not form part of the active site. The choice of the loop conformation had a lesser effect, while including water in the final minimization step was essential for preserving the shape and size of the active site. The best model (model 2) was in good agreement with the data from site-directed mutagenesis studies, and correctly predicted the effect of substitutions at 9 out of 10 amino acid positions. Thus, residues important for P450 2B1 activity, such as Ile- 114, Phe-206, Ile-290, Thr-302, Val-363, and Gly-478, constitute part of the active site and are able to interact with the substrate androstenedione through hydrophobic interactions. On the other hand, Ser-303, Ser-360 and Lys-473 are far from the active site and/or cannot interact with the substrate, in agreement with experimental data. The model indicates other residues likely to be important for enzyme function, such as Tyr- 111, Leu-209, Ile-477, and Ile- 480, which can be tested experimentally. The substrate may assume numerous binding orientations consistent with observed patterns of hydroxylation at C(5) and C(6). The replacement in the model of certain amino acid residues to mimic residue substitutions from site-directed mutagenesis studies and docking of the substrate into the modified active site allowed a plausible explanation for alterations in regio- and stereospecificities of some mutants of P450 2B1, such as Gly-478 → Ala or Val-363 Ala.  相似文献   

15.
Salmonella typhimurium LT2 lines, if phenotypically rough, are fully sensitive to bacteriocin 4-59, produced by Salmonella canastel strain SL1712. Bacteriocin-resistant mutants fell into three classes. Those resistant to phage ES18 and to albomycin proved to be mutants of class chr (equivalent to tonB of Escherichia coli); these mutants still adsorb the bacteriocin and so are classified as tolerant. Another class of (incompletely) tolerant mutants was resistant to phage PH51; their envelope fractions lacked the band corresponding to outer membrane protein 34K, known to serve for adsorption of phage PH51. A third class of mutants, which did not adsorb the bacteriocin, was unaltered in sensitivity to phages. Their envelopes lacked the 33K band, indicating absence of the outer membrane protein 33K, considered to correspond to outer membrane protein II* of E. coli, which in that species is determined at locus ompA (formerly tolG or con). Phage P22 HT105/1 cotransduced the 33K S. typhimurium gene (to be called ompA, to accord with E. coli usage) with pyrD+ at about 30% frequency when the donor allele was ompA+ or one ompA, but at only 3 to 11% when the donor allele was another ompA. When the donor carried either of two long deletions of the put (proline utilization) operon, phage P22 HT105/1 cotransduced put (and ompA+) with pyrD+ at low frequency. The cotransduction data indicate that ompA of S. typhimurium is located between pyrD and put, nearer the former. This corresponds to the map position of ompA in E. coli K-12.  相似文献   

16.
Various in vitro mutated human cytochrome c genes which encode displaced amino acid residues at the 14th, 17th, 28th, 37th, 38th, 56th, and/or 84th residues were constructed, and their degrees of complementation of yeast CYC1 deficiency were examined. Invariant Cys-17 and Arg-38 could not be replaced by alanine and tryptophan, respectively, without function impairment. Cytochrome c containing Ala-14 instead of conserved Cys-14, Gly-38 or Lys-38 instead of Arg-38, and Ser-84 instead of invariant Gly-84 were partly functional. These results indicate that these invariant or conserved residues are important. Cytochromes c containing Cys-56 instead of native Gly-56 was partly functional. Cytochrome c containing Arg-37 and Gly-38 instead of Gly-37 and Arg-38 was slightly functional. Replacement of variable Thr-28 and Gly-37 by Ile-28 and Arg-37, respectively, produced no effects. Our results are as a whole consistent with the view that conserved residues are important and variable residues are less important for cytochrome c to function.  相似文献   

17.
Hybrid genes were constructed. One, ompA153-dfr, encoded the precursor of the 325 residue Escherichia coli outer membrane protein OmpA up to residue 153 which was fused to the complete 186-residue dihydrofolate reductase of the mouse. The other, ompA219-lacZ, coded for the same precursor up to residue 219 which was fused to 1017 COOH-terminal residues of the 1023-residue subunit of the beta-galactosidase of E. coli. Full expression of the ompA153-dfr gene caused accumulation of its precursor and of that of the chromosomally encoded OmpA protein. When the amount of product was reduced, no pro-OmpA and very little pro-hybrid protein accumulated. The precursor was processed and the mature protein was fully accessible to trypsin in permeabilized cells. Expression of the ompA219-lacZ gene led to the presence of the hybrid protein at only 20-30% of the amount expected. About 20% of it appeared to be incorporated in the outer membrane. All of the hybrid was quantitatively accessible to trypsin in permeabilized cells. When the hybrid gene was overexpressed, the protein was found associated with the plasma membrane in the cytosol. It is concluded that both beta-galactosidase and dihydrofolate reductase could quantitatively traverse the plasma membrane, provided the amounts synthesized were sufficiently small.  相似文献   

18.
Monoclonal antibodies which recognize the cell surface-exposed part of outer membrane protein PhoE of Escherichia coli were used to select for antigenic mutants producing an altered PhoE protein. The selection procedure was based on the antibody-dependent bactericidal action of the complement system. Using two distinct PhoE-specific monoclonal antibodies, seven independent mutants with an altered PhoE protein were isolated. Among these seven mutants, five distinct binding patterns were observed with a panel of 10 monoclonal antibodies. DNA sequence analysis revealed the following substitutions in the 330-residue-long PhoE protein: Arg-201----His (three isolates), Arg-201----Cys, Gly-238----Ser, Gly-275----Ser and Gly-275----Asp. It is argued that amino acid residues 201, 238, and 275 are most likely directly involved in antibody binding and, therefore, exposed at the cell surface. Together with Arg-158, which was previously shown to be cell surface exposed as it is changed in phage TC45-resistant phoE mutants, these four positions show a remarkably regular spacing, being approximately 40 residues apart. A model is suggested in which the PhoE polypeptide repeatedly traverses the outer membrane in an antiparallel beta-pleated sheet structure, exposing eight areas to the outside which are all separated by approximately 40 residues.  相似文献   

19.
G Ried  U Henning 《FEBS letters》1987,223(2):387-390
The outer membrane protein OmpA of E. coli K-12 can serve as a receptor for phages and is required for stabilizing mating aggregates during F'-mediated conjugation. Selection for resistance to OmpA-specific phages yields mutants with alterations in the protein at four cell surface exposed sites. It is shown that conjugation deficiency can be caused by apparently only one type of amino acid substitution at one of these sites, the replacement of glycine-154 by aspartic acid. This suggests that, in contrast to binding of phages, a ligand of the donor cell recognizes only a very small area of the protein.  相似文献   

20.
The distal part of the long tail fibers of the Escherichia coli phage T4 consists of a dimer of protein 37. A fragment of the corresponding gene, encoding 253 amino acids, was inserted into several different sites within the cloned gene for the 325-residue outer membrane protein OmpA. In plasmid pTU T4-5 the fragment was inserted once and in pTU T4-10 tandemly twice between the codons for residues 153 and 154 of the OmpA protein. In pTU T4-22 two fragments were present, in tandem, between the codons for residues 45 and 46 of this protein. In pIN T4-6 one fragment was inserted into the ompA gene immediately following the part encoding the signal sequence. The corresponding mature proteins consist, in this order, of 605, 860, 835, and 279 amino acid residues. All precursor proteins were processed and translocated across the plasma membrane. Hence, not only can the OmpA protein serve as a vehicle for export of a nonsecretory protein, but the signal sequence alone can also mediate export of such a protein. Export of the pro-OmpA protein depends on the SecA protein. Export of the tail fiber fragment expressed from pIN T4-6 remained SecA dependent. Thus, the secA pathway in this case is chosen by the signal peptide. It is proposed that a signal peptide can mediate translocation of nonsecretory proteins as long as they are export-compatible. The inability of a signal sequence to mediate export of some proteins appears to be due to export incompatibility of the protein rather than to the absence of information, within the mature part of the polypeptide, which would be required for translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号