首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen insensitivity of carcinoma cells and oxygen sensitivity of non-cancer cells in the histochemical assay of glucose-6-phosphate dehydrogenase (G6PD) enables detection of carcinoma cells in unfixed cell smears or cryostat sections of biopsies. The metabolic background of oxygen insensitivity is still not understood completely. In the present study, rat hepatocytes, rat hepatoma cells (FTO-2B), and human colon carcinoma cells (HT29) were used to elucidate these backgrounds. The residual activity in oxygen was 0%, 55%, and 80% in hepatocytes, hepatoma cells, and colon carcinoma cells, respectively. N-ethylmaleimide (NEM), a blocker of SH-groups, did not affect G6PD activity in both carcinoma cell types but reduced G6PD activity in hepatocytes by 40%. Ultrastructural localization of G6PD activity was exclusively in the cytoplasm of carcinoma cells, but in hepatocytes both in cytoplasm and peroxisomes. NEM abolished peroxisomal G6PD activity only. Histochemical assay of catalase activity demonstrated absence of peroxisomes in both carcinoma cell lines. It is concluded that absence of SH-sensitive G6PD activity in peroxisomes in cancer cells is responsible for the oxygen-insensitivity phenomenon.  相似文献   

2.
Human--hamster somatic cell hybrids have been obtained by fusion of a CHO line (NA31) doubly deficient in hypoxanthine guanine phosphoribosyltransferase and glucose 6-phosphate dehydrogenase (G6PD) with normal G6PD(+) human fibroblasts. Analysis of NA31 extracts has revealed that, although G6PD activity is nearly absent, significant activity can be detected with 2-deoxyglucose 6-phosphate as substrate, so that the mutant and normal forms of the enzyme can both be easily detected. The cell hybrids obtained express human G6PD. The human G6PD subunits are distributed in homodimeric molecules as well as in human--hamster heterodimeric molecules. However, whereas the amount of hamster G6PD subunits present in the hybrid is similar to that in the hamster parental cells, the amount of human G6PD subunits is decreased by 3- to 10-fold when compared to the human parental cell. These results indicate that either the expression of the G6PD gene or the stability of the gene product is altered in the hybrid. By mutagenesis and selection in diamide (a substance that oxidizes intracellular glutathione), we have isolated a clone with a 3- to 5-fold increase in human G6PD activity. This derivative may have an increased rate of expression of the human G6PD structural gene.  相似文献   

3.
The initial and rate-limiting enzyme of the oxidative pentose phosphate shunt, glucose-6-phosphate dehydrogenase (G6PD), is inhibited by NADPH and stimulated by NADP(+). Hence, under normal growth conditions, where NADPH levels exceed NADP(+) levels by as much as 100-fold, the activity of the pentose phosphate cycle is extremely low. However, during oxidant stress, pentose phosphate cycle activity can increase by as much as 200-fold over basal levels, to maintain the cytosolic reducing environment. G6PD-deficient (G6PD(-)) cell lines are sensitive to toxicity induced by chemical oxidants and ionizing radiation. Compared to wild-type CHO cells, enhanced sensitivity to ionizing radiation was observed for G6PD(-) cells exposed to single-dose or fractionated radiation. Fitting the single-dose radiation response data to the linear-quadratic model of radiation-induced cytotoxicity, we found that the G6PD(-) cells exhibited a significant enhancement in the alpha component of radiation-induced cell killing, while the values obtained for the beta component were similar in both the G6PD(-) and wild-type CHO cell lines. Here we report that the enhanced alpha component of radiation-induced cell killing is associated with a significant increase in the incidence of ionizing radiation-induced apoptosis in the G6PD(-) cells. These data suggest that G6PD and the oxidative pentose phosphate shunt protect cells from ionizing radiation-induced cell killing by limiting the incidence of radiation-induced apoptosis. The sensitivity to radiation-induced apoptosis was lost when the cDNA for wild-type G6PD was transfected into the G6PD(-) cell lines. Depleting GSH with l-BSO enhanced apoptosis of K1 cells while having no effect in the G6PD(-) cell line  相似文献   

4.
Recent studies have shown that hyperglycemia is a principal cause of cellular damage in patients with diabetes mellitus. A major consequence of hyperglycemia is increased oxidative stress. Glucose-6-phosphate dehydrogenase (G6PD) plays an essential role in the regulation of oxidative stress by primarily regulating NADPH, the main intracellular reductant. In this paper we show that increased glucose (10-25 mm) caused inhibition of G6PD resulting in decreased NADPH levels in bovine aortic endothelial cells (BAEC). Inhibition was seen within 15 min. High glucose-induced inhibition of G6PD predisposed cells to cell death. High glucose via increased activity of adenylate cyclase also stimulated an increase in cAMP levels in BAEC. Agents that increased cAMP caused a decrease in G6PD activity. Inhibition of cAMP-dependent protein kinase A ameliorated the high glucose-induced inhibition of G6PD. Finally, high glucose stimulated phosphorylation of G6PD. These results suggest that, in BAEC, high glucose stimulated increased cAMP, which led to increased protein kinase A activity, phosphorylation of G6PD, and inhibition of G6PD activity. We conclude that these changes in G6PD activity play an important role in high glucose-induced cell damage/death.  相似文献   

5.
6.
Glucose-6-phosphate dehydrogenase (G6PD), the first enzyme of the pentose phosphate pathway, is the principal intracellular source of NADPH. NADPH is utilized as a cofactor by vascular endothelial cell nitric-oxide synthase (eNOS) to generate nitric oxide (NO*). To determine whether G6PD modulates NO*-mediated angiogenesis, we decreased G6PD expression in bovine aortic endothelial cells using an antisense oligodeoxynucleotide to G6PD or increased G6PD expression by adenoviral gene transfer, and we examined vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation, migration, and capillary-like tube formation. Deficient G6PD activity was associated with a significant decrease in endothelial cell proliferation, migration, and tube formation, whereas increased G6PD activity promoted these processes. VEGF-stimulated eNOS activity and NO* production were decreased significantly in endothelial cells with deficient G6PD activity and enhanced in G6PD-overexpressing cells. In addition, G6PD-deficient cells demonstrated decreased tyrosine phosphorylation of the VEGF receptor Flk-1/KDR, Akt, and eNOS compared with cells with normal G6PD activity, whereas overexpression of G6PD enhanced phosphorylation of Flk-1/KDR, Akt, and eNOS. In the Pretsch mouse, a murine model of G6PD deficiency, vessel outgrowth from thoracic aorta segments was impaired compared with C3H wild-type mice. In an in vivo Matrigel angiogenesis assay, cell migration into the plugs was inhibited significantly in G6PD-deficient mice compared with wild-type mice, and gene transfer of G6PD restored the wild-type phenotype in G6PD-deficient mice. These findings demonstrate that G6PD modulates angiogenesis and may represent a novel angiogenic regulator.  相似文献   

7.
8.
The distribution of G6PD red blood phenotypes in an unbiased sample of 77 Sardinian certain heterozygotes for the GdMediterranean mutant was found to be skewed in favor of the G6PD (+) cells. Four of these individuals exhibited the normal hemizygous phenotype in all of their cells, but two of them had a mosaic population of G6PD (+) and (-) red blood cells when reexamined after 1 year. These findings suggest that somatic selection may be the main factor determining the phenotype variability of individual somatic cells in highly differentiated tissues of heterozygotes at the G6PD locozygotes for the GdMediterranean mutant should not be used as a criterion for precise estimation of the embryonic or stem tissue cell pool at X inactivation.  相似文献   

9.
Epidermal growth factor (EGF), a mitogen for renal proximal tubule cells, activated the hexose monophosphate (HMP) shunt in renal proximal tubule cells (Stanton, R. C., and Seifter, J. L. (1988) Am. J. Physiol. 254, C267-C271). We therefore evaluated the effect of EGF on the HMP shunt enzymes glucose 6-phosphate dehydrogenase (G6PD, the rate-limiting enzyme) and 6-phosphogluconate dehydrogenase. Rat renal cortical cells (RCC) were incubated with either EGF or platelet-derived growth factor (PDGF) and then assayed for G6PD and 6-phosphogluconate dehydrogenase activities. EGF and PDGF increased G6PD activity by 25 and 27% respectively. Although phorbol myristate acetate (PMA), ionomycin, PMA + ionomycin, and 8-bromo-cyclic AMP had no significant effect on the activity, a 5-min preincubation with PMA potentiated the activation of G6PD by PDGF. Growth factor activation of G6PD was also seen in a fibroblast and epithelial cell line. None of the agents affected 6-phosphogluconate dehydrogenase activity in the RCC or in the cell lines. Further exploration into a possible mechanism for G6PD activation revealed that growth factors caused release of G6PD from a structural element within the cell. Streptolysin O permeabilization of RCC did not cause significant release of G6PD. However, within 1 min of addition of EGF or PDGF to permeabilized cells, G6PD was released into the cell supernatant. The nonhydrolyzable analog of GTP, guanosine 5'-O-(thiotriphosphate), caused a similar release of G6PD. Preincubation with pertussis toxin or guanyl-5'-yl thiophosphate inhibited the PDGF but not the EGF effect. Although the data do not establish a definitive proof linking G6PD release and G6PD activation, these results suggest that they are related. Thus, growth factor stimulation of the HMP shunt likely occurs by a novel mechanism associated with release of bound G6PD.  相似文献   

10.
Guo L  Zhang Z  Green K  Stanton RC 《Biochemistry》2002,41(50):14726-14733
In rat pancreatic islets and insulin-producing cell lines, IL-1beta induces expression of inducible nitric oxide synthase and NO production leading to impairment of glucose-stimulated insulin release and decreased cell survival. NADPH is an obligatory cosubstrate for iNOS synthesis of NO. We hypothesized that IL-1beta stimulates an increase in activity of NADPH-producing enzyme(s) prior to NO production and that this increase is necessary for NO production. Using rat insulin-secreting RINm5F cells, we found that (1) IL-1beta caused a biphasic change in the NADPH level (increased by 6 h and decreased after prolonged incubation in the presence of 2 ng/mL IL-1beta); (2) IL-1beta stimulated increased activity of glucose-6-phosphate dehydrogenase (G6PD) in a time- and dose-dependent manner, and G6PD expression was increased by about 80% after exposure to 2 ng/mL IL-1beta for 18 h: (3) IL-1beta-stimulated NO production was positively correlated with increased G6PD activity; (4) IL-1beta did not cause any significant change in enzyme activity of another NADPH-producing enzyme, malic enzyme; (5) IL-1beta-induced NO production was significantly reduced either by inhibiting G6PD activity using an inhibitor of G6PD (dehydroepiandrosterone) or by inhibiting G6PD expression using an antisense oligonucleotide to G6PD mRNA; and (6) IL-1beta stimulated a decrease in the cAMP level. 8-Bromo-cAMP caused decreased G6PD activity, and the protein kinase A inhibitor H89 led to a increase in G6PD activity in RINm5F cells. In conclusion, our data show that IL-1beta stimulated G6PD activity and expression level, providing NADPH that is required by iNOS for NO production in RINm5F cells. Also, inhibition of the cAMP-dependent PKA signal pathway is involved in an IL-1beta-stimulated increase in G6PD activity.  相似文献   

11.
Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re‐expression of wild‐type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2‐dependent manner. The SIRT2‐mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.  相似文献   

12.
Summary A new G6PD variant, designated Gd (+) Laguna, was found in a 9-year-old Brazillian boy of Portuguese ancestry suffering from an iron-refractory anemia. The red cell enzyme activity of the subject was 64%. The mutant enzyme showed slower electrophoretic mobility, increased affinity for glucose-6-phosphate, decreased affinity for NADP+, elevated utilization of substrate analogues, decreased inhibition of NADPH, normal heat stability and a biphasic pH curve. The occurrence of the variant in two non-anemic relatives of the propositus indicates that the association between this G6PD type and anemia may be coincidental.Publication no. 3171 BCR from the Research Institute of Scripps Clinic  相似文献   

13.
G6PD (glucose-6-phosphate dehydrogenase) is the rate-limiting enzyme in the oxidative pentose phosphate pathway that can generate cytosolic NADPH for biosynthesis and oxidative defense. Since cytosolic NADPH can be compensatively produced by other sources, the enzymatic activity deficiency alleles of G6PD are well tolerated in somatic cells but the effect of null mutations is unclear. Herein, we show that G6PD KO sensitizes cells to the stresses induced by hydrogen peroxide, superoxide, hypoxia, and the inhibition of the electron transport chain. This effect can be completely reversed by the expressions of natural mutants associated with G6PD deficiency, even without dehydrogenase activity, exactly like the WT G6PD. Furthermore, we demonstrate that G6PD can physically interact with AMPK (AMPK-activated protein kinase) to facilitate its activity and directly bind to NAMPT (nicotinamide phosphoribosyltransferase) to promote its activity and maintain the NAD(P)H/NAD(P)+ homeostasis. These functions are necessary to the antistress ability of cells but independent of the dehydrogenase activity of G6PD. In addition, the WT G6PD and naturally inactive mutant also can similarly regulate the metabolism of glucose, glutamine, fatty acid synthesis, and GSH and interact with the involved enzymes. Therefore, our findings reveal the previously unidentified functions of G6PD that can act as the important physiological neutralizer of stresses independently of its enzymatic activity.  相似文献   

14.
How anti-neoplastic agents induce MDR (multidrug resistance) in cancer cells and the role of GSH (glutathione) in the activation of pumps such as the MRPs (MDR-associated proteins) are still open questions. In the present paper we illustrate that a doxorubicin-resistant human colon cancer cell line (HT29-DX), exhibiting decreased doxorubicin accumulation, increased intracellular GSH content, and increased MRP1 and MRP2 expression in comparison with doxorubicin-sensitive HT29 cells, shows increased activity of the PPP (pentose phosphate pathway) and of G6PD (glucose-6-phosphate dehydrogenase). We observed the onset of MDR in HT29 cells overexpressing G6PD which was accompanied by an increase in GSH. The G6PD inhibitors DHEA (dehydroepiandrosterone) and 6-AN (6-aminonicotinamide) reversed the increase of G6PD and GSH and inhibited MDR both in HT29-DX cells and in HT29 cells overexpressing G6PD. In our opinion, these results suggest that the activation of the PPP and an increased activity of G6PD are necessary to some MDR cells to keep the GSH content high, which is in turn necessary to extrude anticancer drugs out of the cell. We think that our data provide a new further mechanism for GSH increase and its effects on MDR acquisition.  相似文献   

15.
A new deficient glucose 6-phosphate dehydrogenase (G6PD) variant, G6PD Thessaloniki, which was found in the red blood cells of a 70-year-old woman who had idiopathic myelofibrosis, is described. G6PD Thessaloniki had a low Michaelis constant (Km) for G6P (20 microM), high Km for NADP (10.1 microM), normal pH optimum, reduced heat stability, decreased electrophoretic mobility (96-98% of the normal), increased 2-deoxy-G6P and decreased galactose 6-phosphate utilization. Several other enzymatic activities measured in the patient's red blood cells were normal. Studies of red blood cell survival and glucose utilization gave evidence of haemolysis caused by defective glucose utilization by the pentose phosphate pathway. The only son of the patient had normal G6PD in his red blood cells. In an attempt to investigate the origin of G6PD Thessaloniki, heat stability tests of G6PD extracted from the patient's skin have been performed.  相似文献   

16.
Summary We describe a previously unreported glucose-6-phosphate dehydrogenase (G6PD) variant. G6PD Huntsville was found in a Caucasian male, resident of Huntsville, Alabama who was investigated for otherwise unexplained chronic hemolytic anemia. An unusual feature of this unique, apparently hemolytic, G6PD mutant is that its red cell enzymatic activity has not been decreased. The mutant enzyme is unstable. Additionally, the enzyme variant is characterized by normal electrophoretic mobility, biphasic and slightly alkaline pH optimum, and abnormal kinetics for the natural substrates G6PD and NADP as well as the artificial substrates deamino NADP. Its activity for another artificial substrate 2-deoxy G6PD is normal. The inhibition constant for NADPH is normal. The subject has had no evidence of episodic jaundice.  相似文献   

17.
Glucose 6-phosphate dehydrogenase (G6PD) is a housekeeping enzyme encoded in mammals by an X-linked gene. It has important functions in intermediary metabolism because it catalyzes the first step in the pentose phosphate pathway and provides reductive potential in the form of NADPH. In human populations, many mutant G6PD alleles (some present at polymorphic frequencies) cause a partial loss of G6PD activity and a variety of hemolytic anemias, which vary from mild to severe. All these mutants have some residual enzyme activity, and no large deletions in the G6PD gene have ever been found. To test which, if any, function of G6PD is essential, we have disrupted the G6PD gene in male mouse embryonic stem cells by targeted homologous recombination. We have isolated numerous clones, shown to be recombinant by Southern blot analysis, in which G6PD activity is undetectable. We have extensively characterized individual clones and found that they are extremely sensitive to H2O2 and to the sulfydryl group oxidizing agent, diamide. Their markedly impaired cloning efficiency is restored by reducing the oxygen tension. We conclude that G6PD activity is dispensable for pentose synthesis, but is essential to protect cells against even mild oxidative stress.  相似文献   

18.
19.
Since the introduction of cyano-ditolyl-tetrazolium chloride (CTC), a tetrazolium salt that gives rise to a fluorescent formazan after reduction, it has been applied to quantify activity of dehydrogenases in individual cells using flow cytometry. Confocal laser scanning microscopy (CLSM) showed that the fluorescent formazan was exclusively localized at the surface of individual cells and not at intracellular sites of enzyme activity. In the present study, the technique has been optimized to localize activity of glucose-6-phosphate dehydrogenase (G6PD) intracellularly in individual cells. Activity was demonstrated in cultured fibrosarcoma cells in different stages of the cell cycle. Cells were incubated for the detection of G6PD activity using a medium containing 6% (w/v) polyvinyl alcohol, 5 mM CTC, magnesium chloride, sodium azide, the electron carrier methoxyphenazine methosulphate, NADP, and glucose-6-phosphate. Before incubation, cells were permeabilized with 0.025% glutaraldehyde. Fluorescent formazan was localized exclusively in the cytoplasm of fibrosarcoma cells. The amount of fluorescent formazan in cells increased linearly with incubation time when measured with flow cytometry and CLSM. When combining the Hoechst staining for DNA with the CTC method for the demonstration of G6PD activity, flow cytometry showed that G6PD activity of cells in S phase and G2/M phase is 27 +/- 4% and 43 +/- 4% higher, respectively, than that of cells in G1 phase. CLSM revealed that cells in all phases of mitosis as well as during apoptosis contained considerably lower G6PD activity than cells in interphase. It is concluded that posttranslational regulation of G6PD is responsible for this cell cycle-dependent activity.  相似文献   

20.
The erythrocyte glucose 6-phosphate dehydrogenase activity characteristic of each of 16 inbred mouse strains falls into one of three distinct classes. Strains C57L/J and C57BR/cdJ represent the low activity class: strains A/J and A/HeJ represent the high activity class; other strains have intermediate activities. There is no evidence that structural variation is responsible for the variation in G6PD activity, since partially purified enzyme from each class has the same thermal stability, pH-activity profile, Michaelis constants for G6P and NADP, electrophoretic mobility, and activity using 2-deoxy d-glucose 6-phosphate as substrate. The activities of 6-phosphogluconate dehydrogenase and glucose phosphate isomerase do not differ in erythrocytes of the three G6PD activity classes. Young red cells have higher G6PD activities than old red cells and there is evidence that the intracellular stability of the enzyme is reduced in red cells of strain C57L/J. G6PD activities in kidney and skeletal and cardiac muscle from animals with low red cell G6PD are slightly lower than the activities in kidney and muscle from animals with high red cell G6PD activity. The quantitative differences in red cell G6PD activity are not regulated by X-linked genes, but by alleles at two or more autosomal loci. A simple genetic model is proposed in which alleles at two unlinked, autosomal loci, called Gdr-1 and Gdr-2 regulate G6PD activity in the mouse erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号