首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species.  相似文献   

2.
Lisby M  Rothstein R 《Biochimie》2005,87(7):579-589
In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets of proteins, which are reorganized into a focal assembly at the lesion. Moreover, the composition of these foci is coordinated with cell cycle progression, reflecting the favoring of end-joining in the G1 phase and homologous recombination in S and G2. The assembly of proteins at sites of DNA damage is largely controlled by a network of protein-protein interactions, with the Mre11 complex initiating assembly at DNA ends and replication protein A directing recruitment to single-stranded DNA. This review summarizes current knowledge on the cellular organization of DSB repair and checkpoint proteins focusing on budding yeast and mammalian cells.  相似文献   

3.
Shemarova IV 《Tsitologiia》2011,53(7):600-614
This review summarizes data on the signaling role of calcium-binding proteins (CaBP) in lower eukaryotes cells. The contributions of calmodulin (CaM)-like proteins, calcium-dependent protein kinases (CDPK), as well as calcineurin B-like phosphatase (CaNB) and some other proteins to Ca(2+)-dependent regulation of cellular functions is considered.  相似文献   

4.
5.
哺乳动物精子中的ZP3结合蛋白研究进展   总被引:1,自引:0,他引:1  
张蕴斌  严缘昌  李逸平 《生命科学》2003,15(4):211-214,202
哺乳动物卵透明带糖蛋白ZP3(zona pellucida3)是介导精卵初级结合、诱发精子发生顶体反应的关键分子。目前已在精子中发现多种ZP3结合蛋白。95kD酪氨酸激酶受体可能通过其酪氨酸激酶活性介导ZP3诱发的顶体反应。β—1,4—半乳糖基转移酶与ZP3的糖基结合后,通过激活下游信号分子诱发顶体反应。精子蛋白sp56可能介导了顶体反应期间顶体基质与ZP之间的相互作用。透明带粘附素(zonadhesin)也是在顶体反应发生之后才与ZP发生相互作用。这些精子蛋白介导的下游信号事件将是下一步研究的热点。  相似文献   

6.
7.
Most proteins in all organisms undergo crucial N-terminal modifications involving N-terminal methionine excision, N-alpha-acetylation or N-myristoylation (N-Myr), or S-palmitoylation. We investigated the occurrence of these poorly annotated but essential modifications in proteomes, focusing on eukaryotes. Experimental data for the N-terminal sequences of animal, fungi, and archaeal proteins, were used to build dedicated predictive modules in a new software. In vitro N-Myr experiments were performed with both plant and animal N-myristoyltransferases, for accurate prediction of the modification. N-terminal modifications from the fully sequenced genome of Arabidopsis thaliana were determined by MS. We identified 105 new modified protein N-termini, which were used to check the accuracy of predictive data. An accuracy of more than 95% was achieved, demonstrating (i) overall conservation of the specificity of the modification machinery in higher eukaryotes and (ii) robustness of the prediction tool. Predictions were made for various proteomes. Proteins that had undergone both N-terminal methionine (Met) cleavage and N-acetylation were found to be strongly overrepresented among the most abundant proteins, in contrast to those retaining their genuine unblocked Met. Here we propose that the nature of the second residue of an ORF is a key marker of the abundance of the mature protein in eukaryotes.  相似文献   

8.
ABSTRACT

Kinesins constitute a superfamily of ATP-driven microtubule motor enzymes that convert the chemical energy of ATP hydrolysis into mechanical work along microtubule tracks. Kinesins are found in all eukaryotic organisms and are essential to all eukaryotic cells, involved in diverse cellular functions such as microtubule dynamics and morphogenesis, chromosome segregation, spindle formation and elongation and transport of organelles. In this review, we explore recently reported functions of kinesins in eukaryotes and compare their specific cargoes in both plant and animal kingdoms to understand the possible roles of uncharacterized motors in a kingdom based on their reported functions in other kingdoms.  相似文献   

9.
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug–target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.  相似文献   

10.
Phosphatidylinositol/phosphatidylcholine transfer proteins (PITPs) remain largely functionally uncharacterized, despite the fact that they are highly conserved and are found in all eukaryotic cells thus far examined by biochemical or sequence analysis approaches. The available data indicate a role for PITPs in regulating specific interfaces between lipid-signaling and cellular function. In this regard, a role for PITPs in controlling specific membrane trafficking events is emerging as a common functional theme. However, the mechanisms by which PITPs regulate lipid-signaling and membrane-trafficking functions remain unresolved. Specific PITP dysfunctions are now linked to neurodegenerative and intestinal malabsorption diseases in mammals, to stress response and developmental regulation in higher plants, and to previously uncharacterized pathways for regulating membrane trafficking in yeast and higher eukaryotes, making it clear that PITPs are integral parts of a highly conserved signal transduction strategy in eukaryotes. Herein, we review recent progress in deciphering the biological functions of PITPs, and discuss some of the open questions that remain.  相似文献   

11.
Filippov V  Solovyev V  Filippova M  Gill SS 《Gene》2000,245(1):213-221
The RNase III family of double-stranded RNA-specific endonucleases is characterized by the presence of a highly conserved 9 amino acid stretch in their catalytic center known as the RNase III signature motif. We isolated the drosha gene, a new member of this family in Drosophila melanogaster. Characterization of this gene revealed the presence of two RNase III signature motifs in its sequence that may indicate that it is capable of forming an active catalytic center as a monomer. The drosha protein also contains an 825 amino acid N-terminus with an unknown function. A search for the known homologues of the drosha protein revealed that it has a similarity to two adjacent annotated genes identified during C. elegans genome sequencing. Analysis of the genomic region of these genes by the Fgenesh program and sequencing of the EST cDNA clone derived from it revealed that this region encodes only one gene. This newly identified gene in nematode genome shares a high similarity to Drosophila drosha throughout its entire protein sequence. A potential drosha homologue is also found among the deposited human cDNA sequences. A comparison of these drosha proteins to other members of the RNase III family indicates that they form a new group of proteins within this family.  相似文献   

12.
13.
14.
While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins.  相似文献   

15.
Serine-arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with variable arginine-rich regions analogous to the arginine-serine-rich (RS) domain in metazoans. The density of RS repeats in these regions correlates with the conservation of the branch site signal, providing evidence for an ancestral origin of SR proteins and indicating that the SR proteins and the branch site co-evolved.  相似文献   

16.
3'-End processing of pre-mRNA in eukaryotes   总被引:1,自引:0,他引:1  
  相似文献   

17.
Within a specific fraction of acidic chromatin-associated proteins from HeLa and the lower eukaryote Physarum polycephalum numerous similarities exist. Several of the similar polypeptides in both cell types are synthesized and appear in the residual chromatin material while still others disappear in response to starvation, a common and universal stimulus. Proteins which incorporate no radioactive amino acids during starvation and ultimately disappear from the residual chromatin material are resynthesized upon refeeding. This resynthesis must be complete before mitosis will again occur. These observations suggest that within the complement of acidic chromatin proteins functional homologies exist in diverse eukaryotes.  相似文献   

18.
19.
The X-ray crystal structures of several important vitamin B12 binding proteins that have been solved in recent years have enhanced our current understanding in the vitamin B12 field. These structurally diverse groups of B12 binding proteins perform various important biological activities, both by transporting B12 as well as catalyzing various biological reactions. An in-depth comparative analysis of these structures was carried out using PDB coordinates of a carefully chosen database of B12 binding proteins to correlate the overall folding of the molecule with phylogeny, the B12 interactions, and with their biological function. The structures of these proteins are discussed in the context of this comparative analysis.  相似文献   

20.
Gerber J  Lill R 《Mitochondrion》2002,2(1-2):71-86
Iron-sulfur (Fe-S) clusters are ubiquitous co-factors of proteins that play an important role in metabolism, electron-transfer and regulation of gene expression. In eukaryotes mitochondria are the primary site of Fe-S cluster biogenesis. The organelles contain some ten proteins of the so-called iron-sulfur cluster (ISC) assembly machinery that is well-conserved in bacteria and eukaryotes. The ISC assembly machinery is responsible for biogenesis of Fe-S proteins within mitochondria. In addition, this machinery is involved in the maturation of extra-mitochondrial Fe-S proteins by cooperating with mitochondrial proteins with an exclusive function in this process. This review summarizes recent developments in our understanding of the biogenesis of cellular Fe-S proteins in eukaryotes. Particular emphasis is given to disorders in Fe-S protein biogenesis causing human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号